
TransferLab Seminar

Second-Order Information and Applications

Kristof Schröder

11.04.2024

appliedAI Institute for Europe



Overview

Introduction

LLM Pre-Training

LLM Fine-Tuning

Physics Informed Neural Networks (PINNs)

Influence Functions

Software

1



Introduction



Why Second-Order?

• Encodes

geometry/curvature

information about the

optimization objective

• Can reduce number of

iterations

• Can improve the quality of

the optimization result

Created with

https://www.bing.com/chat

2



Gradient descent

In order to solve (for L smooth,

strongly convex)

min
θ∈Rd

L(θ),

iterate

θt+1 = θt − γt∇θL(θt).

• convergence rate is linear

• convergence depends on

the condition number of

the Hessian at the solution

Source: Wikipedia

3

https://en.wikipedia.org/wiki/Gradient_descent


Newton’s Method in Optimization

In order to solve

min
θ∈Rd

L(θ),

iterate

θt+1 = θt − HL(θt)
−1∇θL(θt)

where HL(θt) = ∇2
θL(θt).

• quadratic convergence rate

• think of HL(θt)
−1 as a

preconditioner, i.e.

cond(HL(θt)
−1HL(θ

⋆)) is

small

Source: Wikipedia

4

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization


Neural Networks

In this case

L(θ) = 1

N

N∑
i=1

ℓ(f (xi ; θ), yi )

where f (x , θ) is a parametrized model and ℓ is some loss function.

Problems:

• L is non-convex, Newton could even converge to a maximum

• loss-landscape is highly ill-conditioned, i.e. very heterogeneous

curvature

• memory cost is O(d2) and naive inversion has complexity

O(d3)

5



Neural Networks

In this case

L(θ) = 1

N

N∑
i=1

ℓ(f (xi ; θ), yi )

where f (x , θ) is a parametrized model and ℓ is some loss function.

Problems:

• L is non-convex, Newton could even converge to a maximum

• loss-landscape is highly ill-conditioned, i.e. very heterogeneous

curvature

• memory cost is O(d2) and naive inversion has complexity

O(d3)

5



Neural Networks

In this case

L(θ) = 1

N

N∑
i=1

ℓ(f (xi ; θ), yi )

where f (x , θ) is a parametrized model and ℓ is some loss function.

Problems:

• L is non-convex, Newton could even converge to a maximum

• loss-landscape is highly ill-conditioned, i.e. very heterogeneous

curvature

• memory cost is O(d2) and naive inversion has complexity

O(d3)

5



Neural Networks

In this case

L(θ) = 1

N

N∑
i=1

ℓ(f (xi ; θ), yi )

where f (x , θ) is a parametrized model and ℓ is some loss function.

Problems:

• L is non-convex, Newton could even converge to a maximum

• loss-landscape is highly ill-conditioned, i.e. very heterogeneous

curvature

• memory cost is O(d2) and naive inversion has complexity

O(d3)

5



Neural Networks

In this case

L(θ) = 1

N

N∑
i=1

ℓ(f (xi ; θ), yi )

where f (x , θ) is a parametrized model and ℓ is some loss function.

Problems:

• L is non-convex, Newton could even converge to a maximum

• loss-landscape is highly ill-conditioned, i.e. very heterogeneous

curvature

• memory cost is O(d2) and naive inversion has complexity

O(d3)

5



Neural Networks

In this case

L(θ) = 1

N

N∑
i=1

ℓ(f (xi ; θ), yi )

where f (x , θ) is a parametrized model and ℓ is some loss function.

Problems:

• L is non-convex, Newton could even converge to a maximum

• loss-landscape is highly ill-conditioned, i.e. very heterogeneous

curvature

• memory cost is O(d2) and naive inversion has complexity

O(d3)

5



Strategies

Approximate the preconditioned gradients

HL(θ)
−1∇θL(θ)

What to do?

• Implicit inversion, block approximation, diagonal

approximation,

• Randomization: stochastic estimators + smoothing (EMA)

• Low-rank approximations

• Decomposition based approximations: Gauss-Newton

approximation, Fisher information matrix (Natural Gradient

Method)

6



Strategies

Approximate the preconditioned gradients

HL(θ)
−1∇θL(θ)

What to do?

• Implicit inversion, block approximation, diagonal

approximation,

• Randomization: stochastic estimators + smoothing (EMA)

• Low-rank approximations

• Decomposition based approximations: Gauss-Newton

approximation, Fisher information matrix (Natural Gradient

Method)

6



Strategies

Approximate the preconditioned gradients

HL(θ)
−1∇θL(θ)

What to do?

• Implicit inversion, block approximation, diagonal

approximation,

• Randomization: stochastic estimators + smoothing (EMA)

• Low-rank approximations

• Decomposition based approximations: Gauss-Newton

approximation, Fisher information matrix (Natural Gradient

Method)

6



Strategies

Approximate the preconditioned gradients

HL(θ)
−1∇θL(θ)

What to do?

• Implicit inversion, block approximation, diagonal

approximation,

• Randomization: stochastic estimators + smoothing (EMA)

• Low-rank approximations

• Decomposition based approximations: Gauss-Newton

approximation, Fisher information matrix (Natural Gradient

Method)

6



Strategies

Approximate the preconditioned gradients

HL(θ)
−1∇θL(θ)

What to do?

• Implicit inversion, block approximation, diagonal

approximation,

• Randomization: stochastic estimators + smoothing (EMA)

• Low-rank approximations

• Decomposition based approximations: Gauss-Newton

approximation, Fisher information matrix (Natural Gradient

Method)

6



LLM Pre-Training



LLM Pre-Training

Pre-training of a large language model typically incur significant

expenses. Often the chosen state of the state-of-the-art solver is

Adam.

How to incorporate second-order information in order to

• reduce the number of iterations needed,

• only adding a small over-head per iteration,

• keep memory footprint comparable?

7



LLM Pre-Training

Pre-training of a large language model typically incur significant

expenses. Often the chosen state of the state-of-the-art solver is

Adam.

How to incorporate second-order information in order to

• reduce the number of iterations needed,

• only adding a small over-head per iteration,

• keep memory footprint comparable?

7



Motivating Example

1
1Liu et al., Sophia: A Scalable Stochastic Second-order Optimizer for

Language Model Pre-training, 2023 [LLH+23]
8



Sophia: Second-order Clipped Stochastic Optimization2

• Construct stochastic

estimators for the diagonal

of the Hessian.

• Exponential smoothing of

minibatch gradients at each

iteration.

• Exponential smoothing of

the second-order information

every k = 10 iteration.

• Per-coordinate clipping to

handle negative curvature.

2Liu et al., Sophia: A Scalable Stochastic Second-order Optimizer for

Language Model Pre-training, 2023 [LLH+23]

9



Iterations

Figure 4: Loss evolution for training GPT-2 on OpenWebText3

3Liu et al., Sophia: A Scalable Stochastic Second-order Optimizer for

Language Model Pre-training, 2023 [LLH+23]

10

https://paperswithcode.com/dataset/openwebtext


Scaling Laws

Figure 5: Validation loss vs. number of parameters4

4Liu et al., Sophia: A Scalable Stochastic Second-order Optimizer for

Language Model Pre-training, 2023 [LLH+23]

11



Computation Time

• same memory cost as

AdamW,

• overall wall-clock time

overhead less than 5%

• halving the number of

iteration results in almost

halving the total wall-clock

time

Figure 6: Computation Timea

aLiu et al., Sophia: A Scalable

Stochastic Second-order Optimizer for

Language Model Pre-training, 2023

[LLH+23]

12



LLM Fine-Tuning



LLM Fine-Tuning

• Fine-tuning language models has been effective for various

tasks, but the memory demands of backpropagation in large

models are still significant.

• The limitations of available compute environments typically

constrain the fine-tuning.

• Recently, zero-order methods have been adapted to

fine-tuning LLMs5(with up to 12x reduced memory

consumption), but are known to converge slowly.

5Malladi et al., Fine-Tuning Language Models with Just Forward Passes, 2023

[MGN+23]

13



Zero-Order Method

Definition (Simultaneous Perturbation Stochastic Approxima-

tion or SPSA)
For θ ∈ Rd and loss function L estimate the gradient on a

mini-batch B as

gε(θ) =
L(θ + εz ,B)− L(θ − εz ,B)

2ε
· z ≈ zzT∇θL(θ,B),

for z ∼ N (0, Idd).

• Requires two forward passes per mini-natch, no

back-propagation.

• Can be averaged over several samplings from N (0, Idd)

(n-SPSA).

14



Motivation

Figure 7: Toy example in figure 16

6Zhao et al., Second-Order Fine-Tuning without Pain for LLMs: A Hessian

Informed Zeroth-Order Optimizer, 2024 [ZDY+24] 15



Hessian Informed Zero-Order Optimization (HiZOO)

For θ ∈ Rd and loss function L estimate the gradient on a

mini-batch B as

gε(θ) =
L(θ + εΣ

1/2
t z ,B)− L(θ − εΣ

1/2
t z ,B)

2ε
· Σ1/2

t z ,

for z ∼ N (0, Idd) and Σt is an approximation to the diagonal of

the inverse Hessian matrix, which gets updated simultanously

during iteration.

Overall computation requires three forward passes of the model7.

7Zhao et al., Second-Order Fine-Tuning without Pain for LLMs: A Hessian

Informed Zeroth-Order Optimizer, 2024 [ZDY+24]

16



HiZOO vs. MeZO

Figure 8: Loss evolution for LoRa training RoBERTa on the MultiNLI

dataset8, see figure 39

8https://paperswithcode.com/dataset/multinli
9Zhao et al., Second-Order Fine-Tuning without Pain for LLMs: A Hessian

Informed Zeroth-Order Optimizer, 2024 [ZDY+24] 17



Physics Informed Neural Networks

(PINNs)



Physics Informed Neural Networks (PINNs)

Consider a partial differential equation of the form

D[u(x), x ] = 0, x ∈ Ω

B[u(x), x ] = 0, x ∈ ∂Ω

where Ω ⊆ Rd , D is a differential operator and B is the boundary

value operator.

Let u(x ; θ) be a neural network and minimize

L(θ) = 1

2nres

nres∑
i=1

(D[u(x resi ; θ), x resi ])2

+
1

2nbc

nbc∑
i=1

(B[u(xbci ; θ), xbci ])2

18



Physics Informed Neural Networks (PINNs)

Consider a partial differential equation of the form

D[u(x), x ] = 0, x ∈ Ω

B[u(x), x ] = 0, x ∈ ∂Ω

where Ω ⊆ Rd , D is a differential operator and B is the boundary

value operator. Let u(x ; θ) be a neural network and minimize

L(θ) = 1

2nres

nres∑
i=1

(D[u(x resi ; θ), x resi ])2

+
1

2nbc

nbc∑
i=1

(B[u(xbci ; θ), xbci ])2

18



Key Observations10

• PINNs must be trained to near-zero loss to obtain an

adequate solution (in ℓ2 sense) to the PDE.

• The loss-landscape is ill-conditioned, i.e. the Hessian HL(θ)

has a large condition number. In other words, the loss is very

steep in some directions and very flat in others.

• Pre-conditioning with second-order information improves the

conditioning significantly.

10Rathore et al., Challenges in Training PINNs: A Loss Landscape Perspective,

2024 [RLF+24]

19



Spectral Density

Figure 9: Optmizing with Adam + L-BFGS, Hessian spectral density

after 41k iterations with and without preconditioning with quasi-Newton

matrix11

.
11Rathore et al., Challenges in Training PINNs: A Loss Landscape Perspective,

2024 [RLF+24] 20



NysNewton-CG (NNCG)

Motivation: L-BFGS may stop early and leaves the loss

under-optimized (see Section 7.112).

Idea: Use a different approximate Newton update step, which

allow for further progress.

Introduce a positive-definite rank-r approximation (Nyström

approximation)

Hnys = (HLS)(S
THLS)

†(HLS)
T , S ∈ Rd×r standard normal,

of the Hessian as preconditioner and use Conjugate Gradient. 13

12Rathore et al., Challenges in Training PINNs: A Loss Landscape Perspective,

2024 [RLF+24]
13Frangella, et al., Randomized Nyström Preconditioning, 2023 [FTU23]

21



NysNewton-CG (NNCG)

Motivation: L-BFGS may stop early and leaves the loss

under-optimized (see Section 7.112).

Idea: Use a different approximate Newton update step, which

allow for further progress.

Introduce a positive-definite rank-r approximation (Nyström

approximation)

Hnys = (HLS)(S
THLS)

†(HLS)
T , S ∈ Rd×r standard normal,

of the Hessian as preconditioner and use Conjugate Gradient. 13

12Rathore et al., Challenges in Training PINNs: A Loss Landscape Perspective,

2024 [RLF+24]
13Frangella, et al., Randomized Nyström Preconditioning, 2023 [FTU23]

21



NysNewton-CG (NNCG)

Motivation: L-BFGS may stop early and leaves the loss

under-optimized (see Section 7.112).

Idea: Use a different approximate Newton update step, which

allow for further progress.

Introduce a positive-definite rank-r approximation (Nyström

approximation)

Hnys = (HLS)(S
THLS)

†(HLS)
T , S ∈ Rd×r standard normal,

of the Hessian as preconditioner and use Conjugate Gradient. 13

12Rathore et al., Challenges in Training PINNs: A Loss Landscape Perspective,

2024 [RLF+24]
13Frangella, et al., Randomized Nyström Preconditioning, 2023 [FTU23]

21



NysNewton-CG (NNCG)

Figure 10: NysNewton-CG optimizer14

14Rathore et al., Challenges in Training PINNs: A Loss Landscape Perspective,

2024 [RLF+24]

22



NysNewton-CG (NNCG)

Figure 11: Loss evolution Adam + L-BFGS + NNCG15

15Rathore et al., Challenges in Training PINNs: A Loss Landscape Perspective,

2024 [RLF+24]

23



Influence Functions



Influence Functions

How to estimate the influence of single training points on model

parameters or model output on test points?

Definition (Influence Function)

I(zt , z) = ∇θℓ(zt , θ)
T (Hθ + λId)

−1∇θℓ(z , θ)

Again, the bottleneck is the computation of the preconditioned

gradients

(Hθ + λId)
−1∇θℓ(z , θ)

24



Influence Functions

How to estimate the influence of single training points on model

parameters or model output on test points?

Definition (Influence Function)

I(zt , z) = ∇θℓ(zt , θ)
T (Hθ + λId)

−1∇θℓ(z , θ)

Again, the bottleneck is the computation of the preconditioned

gradients

(Hθ + λId)
−1∇θℓ(z , θ)

24



Influence Functions

How to estimate the influence of single training points on model

parameters or model output on test points?

Definition (Influence Function)

I(zt , z) = ∇θℓ(zt , θ)
T (Hθ + λId)

−1∇θℓ(z , θ)

Again, the bottleneck is the computation of the preconditioned

gradients

(Hθ + λId)
−1∇θℓ(z , θ)

24



Recent Implementations

• EKFAC (Eigenvalue Corrected Kronecker

Factorization)[GBA+23]:
• Block inversion (per layer), Gauss-Newton approximation,

Kronecker factorization

• Implementation: pyDVL

• Seminar talk, paper pill

• Nyström Preconditioned CG[FTU23]
• Randomized low-rank approximation as preconditioner,

Woodbury matrix identity

• Implementation: pyDVL, implemented for the next minor

release

• DataInf[KWWZ23]:
• Block inversion (per layer), Gauss-Newton approximation,

harmonic mean estimator, Woodbury matrix identity

• Implementation: planned for next major release, github issue

• paper pill 25

https://pydvl.org/stable/influence/influence_function_model/#eigenvalue-corrected-k-fac
https://transferlab.ai/seminar/2024/studying-llms-with-influence-functions/
https://transferlab.ai/pills/2023/llm-influences-with-ekfac/
https://en.wikipedia.org/wiki/Woodbury_matrix_identity
https://pydvl.org/stable/influence/influence_function_model/#conjugate-gradient
https://en.wikipedia.org/wiki/Woodbury_matrix_identity
https://github.com/aai-institute/pyDVL/issues/499
https://transferlab.ai/pills/2023/datainf-lora-tuned-llm/


Software



Software

• Sophia: Second-order Clipped Stochastic
Optimization[LLH+23]

• https://github.com/Liuhong99/Sophia

• Torch optimizer implementation, no package

• paper pill

• MeZO: Memory-efficient Zeroth-order[MGN+23]

• https://github.com/princeton-nlp/MeZO

• HuggingFace trainer implementation, no package

• HiZOO: Hessian informed zeroth-order optimization[ZDY+24]

• https://anonymous.4open.science/r/HiZOO-27F8

• HuggingFace trainer implementation, no package

• NysNewton-CG[RLF+24]

• https:

//anonymous.4open.science/r/opt_for_pinns-9246

• Torch optimizer implementation, no package

26

https://github.com/Liuhong99/Sophia
https://transferlab.ai/pills/2023/sophia/
https://github.com/princeton-nlp/MeZO
https://anonymous.4open.science/r/HiZOO-27F8
https://anonymous.4open.science/r/opt_for_pinns-9246
https://anonymous.4open.science/r/opt_for_pinns-9246


Thank you!

27



References i

Zachary Frangella, Joel A. Tropp, and Madeleine Udell.

Randomized Nyström Preconditioning.

SIAM Journal on Matrix Analysis and Applications,

44(2):718–752, June 2023.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex

Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li, Esin

Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė,

Karina Nguyen, Nicholas Joseph, Sam McCandlish, Jared

Kaplan, and Samuel R. Bowman.

Studying Large Language Model Generalization with

Influence Functions, August 2023.

28



References ii

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou.

DataInf: Efficiently Estimating Data Influence in

LoRA-tuned LLMs and Diffusion Models, October 2023.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu

Ma.

Sophia: A Scalable Stochastic Second-order Optimizer

for Language Model Pre-training, May 2023.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian,

Jason D. Lee, Danqi Chen, and Sanjeev Arora.

Fine-Tuning Language Models with Just Forward Passes,

May 2023.

29



References iii

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and

Madeleine Udell.

Challenges in Training PINNs: A Loss Landscape

Perspective, February 2024.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian,

and Ivor W. Tsang.

Second-Order Fine-Tuning without Pain for LLMs:A

Hessian Informed Zeroth-Order Optimizer, February

2024.

30


	Introduction
	LLM Pre-Training
	LLM Fine-Tuning
	Physics Informed Neural Networks (PINNs)
	Influence Functions
	Software

