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About Me

Name: Tom Schierenbeck

E-Mail: tom_sch@uni-bremen.de

GitHub: tomsch420

Position: PhD Student at the Institute for 

Artificial Intelligence

Involved in the Projects:

- PyCRAM, Cognitive Architecture for 

Robots in Python

- Probabilistic Modelling

- Lecturer for Knowledge Acquisition and 

Knowledge Representation

- Project Leader of FAME, Learning plans 

from Videos

https://github.com/tomsch420
https://github.com/cram2/pycram


About the Institute 
for Artificial 
Intelligence

- AI-Powered & Cognition-enabled Robotics 

- Perception, reasoning, learning, knowledge, 

decision-making, prospection, planning, action 

- Cognitive robot architecture

- Robot agents 

- Open education, research and innovation 

- Successful robot applications 



Goals for Today
After this presentation you will know…

- What is probabilistic Machine Learning

-  Which classes exist inside Probabilistic Machine Learning

- How models have to be designed to match certain 

requirements

- What are Nyga Distributions

- What are Joint Probability Trees



Probabilistic Machine Learning



What is it?

- Subfield of Machine Learning and Artificial 

Intelligence

- Expresses explicit uncertainty over 

predictions instead of single point 

estimates

- Answers are typically entire distributions 

about all possible answers instead of single 

predictions

- Key tool to automate tasks without 

specifying every detail

- Answers from machine learning systems 

are not taken for granted and come with 

attached probabilities

- Allows reasoning over every possible 

scenario

Why is it cool?



Conditional 
Expectation is 
not Enough

Most modern 

Machine Learning 

Algorithms calculate 



Quantities of 
Interest

- Evaluation of the Likelihood 

- Computing Integrals over Hyper 

Rectangles

- Moments

- Finding the mode of the distribution

The most common queries to probability 
distributions are…



The price to pay…

- The key operation in ordinary machine learning is optimization

- Integrals are the key operation to probabilistic machine learning

- Integration is computational very heavy and only doable under strict constraints

- We are interested in creating models that compute every interesting quantity in polynomial time

- Such constraints have been formalized in [1]



Probabilistic Circuits



Probabilistic Circuits are…

- The formalism that explains tractable inference

- Directed Acyclic Graphs that where the nodes are either…

- a tractable distribution over  encoded as a distribution unit

- a product of PCs over subsets of 

- a convex weighted sum of PCs over subsets of 



Circuit Examples



Tractable Inference

A product node is decomposable if the scopes of 

its input units do not share variables.

A PC is decomposable if all of its product units are 

decomposable.

A sum node is deterministic if, for any 

fully-instantiated input, the output of at most one 

of its children is nonzero. Their input units do not 

share support.

A circuit is deterministic if all of its sum nodes are 

deterministic.



Nyga Distribution Tutorial

https://probabilistic-model.readthedocs.io/en/latest/examples/nyga_distribution.html


Joint Probability Trees Tutorial

https://probabilistic-model.readthedocs.io/en/latest/examples/joint_probability_trees.html


Dynamic Circuits

- Consider that we now want to reason about 

dynamic worlds, such as time or relations

- Hidden Markov Models are a prominent 

example of doing so

- Since complexity of inference in PGMs is 

exponential heavy in their bounded 

treewidth, they also expand to relations 

pretty well

-  Due to their shallow form JPTs offer a 

perfect interface for template modelling

- JPTs can be force to be marginal 

deterministic and hence provide the 

necessary amount of parameters to interact 

well with other (dynamic) concepts

https://en.wikipedia.org/wiki/Treewidth
https://en.wikipedia.org/wiki/Treewidth


Dynamic Models as 
Circuit



What is coming next?

- Probabilistic Circuits in template models

- SQL as query language for probabilistic circuits

- Large scale evaluation on template JPTs with 

PyCRAM

- Transformations in Circuits

- Convolutions of Circuits

- Metrics for Circuits

...

https://probabilistic-model.readthedocs.io/en/latest/examples/template_modelling.html


Research 
Implementation

- Flexible

- More general circuits

- Unified interface

- Higher Usability

- GitHub

Production 
Implementation

- Cython Backend

- JPTs only

- Basic Interface

- super fast

- GitHub

https://github.com/tomsch420/probabilistic_model
https://github.com/joint-probability-trees/jpt-dev
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Thanks for your attention!

Questions?


