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RL: Reward Good Behaviors, Punish Bad Behaviors

AlphaGo
Google DeepMind, 2015 – 18

Humanoid Locomotion
Radosavovic et al., 2013

Tokamak Control
Degrave et al., 2022

http://www.youtube.com/watch?v=eFoBfFhwo18


This Work: Simulated Robot Control

position, velocity → motor torques

acrobot hopper ant humanoid

DMC: Tassa et al., 2018 DeepMind Control Suite – gifs from https://github.com/facebookresearch/drqv2  
MuJoCo: Brockman et al., 2016, https://github.com/openai/gym – gifs from https://gymnasium.farama.org/environments/mujoco/ 3

https://arxiv.org/abs/1801.00690
https://github.com/facebookresearch/drqv2
https://github.com/openai/gym
https://gymnasium.farama.org/environments/mujoco/


DoubleGum

● Bridges gap between reinforcement learning theory and practice
● New algorithm: effective, computationally efficient, simple to implement
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RL Algorithms Reinforce/Repeat Behavior that are Rewarding 

AgentEnvironment
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Maximize Return

Image from https://gymnasium.farama.org/environments/mujoco/ 

https://gymnasium.farama.org/environments/mujoco/
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RL Algorithms Maximize Expected Return

where and
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RL Algorithms use a Q-Function to Maximize Expected Return

Measures quality of action a_t in s_t

where and
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Self-Consistency of the Q-Function
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Self-Consistency of the Q-Function
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Self-Consistency of the Q-Function

Proof Sketch: induction with base case:

and inductive step:
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Deep RL Approximates Optimal Q-Function with NN

(Bellman Optimality Equation)
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Deep RL Approximates Optimal Q-Function with NN

(Bellman Optimality Equation)

Note after presenting: Make it clearer that this MLE interpretation of the MSE loss applied to 
Q-learning is my interpretation (from many), and that this is not presented in the papers that 
applied MSE to Q-Learning [Riedmiller, 2005] and [Ernst, 2005]
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Deep RL Approximates Optimal Q-Function with NN

(Bellman Optimality Equation)

Modelling Assumption of MSE does 
not match empirical behavior!
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Our Noise Model

Deep Q-Learning has an inaccurate noise model
We present a theoretically-grounded noise model leading to better performance

Standard Noise Model



1. Introduction

2. Derivation

3. Results
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1. Introduction

2. Derivation
a. Of noise model 
b. Of algorithm

3. Results
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Noise Model Derivation Outline
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Noise Model Derivation Outline
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Noise Model Derivation Outline



Two Components of the DDPG Baseline Algorithm

29DDPG: Deep Deterministic Policy Gradients [Lillicrap et al., 2015]

One Neural Network:

https://arxiv.org/abs/1509.02971


Two Components of the DDPG Baseline Algorithm
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Two Neural Networks:

Critic learns Q-Function:

Actor learns to maximize Q-Function:

DDPG: Deep Deterministic Policy Gradients [Lillicrap et al., 2015]

One Neural Network:

https://arxiv.org/abs/1509.02971
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Noise Model Derivation Outline
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Noise Model Derivation Outline

Quantify Noise Induced by Each Approximation
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Assumption: Two Heteroscedastic Gumbel Noise Sources

35



36

Assumption: Two Heteroscedastic Gumbel Noise Sources

Extreme Value Theorem:
(if z unbounded)
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Assumption: Two Heteroscedastic Gumbel Noise Sources

[Thrun and Schwarz, 1993]: 

Ours:

https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf


Assumption: Two Heteroscedastic Gumbel Noise Sources
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Assumption: Two Heteroscedastic Gumbel Noise Sources
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Assumption: Two Heteroscedastic Gumbel Noise Sources
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Typo: should be g_{\theta, a'} here
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DoubleGum Noise Model

where



1. Introduction

2. Derivation
a. Of noise model 
b. Of algorithm

3. Results
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Noise Model -> Loss Function
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Noise Model -> Loss Function

Logistic Distribution
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Noise Model -> Loss Function

Logistic Distribution

Scalar hyperparameter c



The DoubleGum Algorithm

52

1. c hyperparameter determined at beginning of training and fixed
2. Learn \beta and q using generalized method of moments
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The DoubleGum Algorithm
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1. c hyperparameter determined at beginning of training and fixed
2. Learn \beta and q using generalized method of moments

Moment-Matching loss function:



The DoubleGum Algorithm
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1. c hyperparameter determined at beginning of training and fixed
2. Learn \beta and q using generalized method of moments

Q

s, a

Q(s, a) \beta(s, a)

Moment-Matching loss function:



Empirical Validity of DoubleGum Noise Model
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(DDPG)

(Ours)
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The DoubleGum Algorithm

1. c fixed hyperparameter determined at beginning of training
2. Learn \beta and q using generalized method of moments

where



1. Introduction

2. Derivation

3. Results
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Four Simulated Robotics Suites
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DeepMind Control
(DMC)

Locomotion

Movement, Joints + Control 
(MuJoCo)

Locomotion

Meta-World

Manipulation

Box2D

Locomotion

DMC: Tassa et al., 2018 – gifs from https://github.com/facebookresearch/drqv2  
MuJoCo: Brockman et al., 2016 – gifs from https://gymnasium.farama.org/environments/mujoco/ 

Meta-World: Yu et al., 2019  
Box2D: https://gymnasium.farama.org/environments/box2d/ 

https://arxiv.org/abs/1801.00690
https://github.com/facebookresearch/drqv2
https://github.com/openai/gym
https://gymnasium.farama.org/environments/mujoco/
https://arxiv.org/abs/1910.10897
https://gymnasium.farama.org/environments/box2d/


Baselines

DoubleGum:
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Baselines
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TD3:

SAC: 
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Evaluation mode of DoubleGum: hyperparameter c=-0.1 fixed across all tasks



Benchmark on 33 Continuous Control Tasks, 4 Suites

65IQM: InterQuartile Mean +- 95% stratified bootstrap CIs.  An aggregate metric, from [Agarwal et al., 2021] 

https://github.com/google-research/rliable
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Varying hyperparameter c



67

Varying c changes pessimism/optimism of target

where
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Baselines: adjusting pessimism per suite

DoubleGum:

DDPG: 

TD3:

SAC: 

Best of DDPG/TD3

Apply Twin Networks to SAC

FinerTD3: i = {1, 2, 3, 4, 5}, select jth smallest value

Typo: should be \beta \mathbb{H} here



Benchmark on 33 Tasks: Adjusting Pessimism Per Suite
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DoubleGum: simple, efficient, effective!

70

● Noise in Deep Q-Learning is shaped by two heteroscedastic Gumbel distributions

● Accounting for these distributions yields SOTA aggregate performance (AFAIK)

● Stable training across 33 continuous control environments

Questions: dythui2+drl@gmail.com
Code: https://github.com/dyth/doublegum 

Thanks to Profs. Aaron Courville and Pierre-Luc Bacon + wider Mila community!

mailto:dythui2+drl@gmail.com
https://github.com/dyth/doublegum

