
Spotlight at 2023

2

RL: Reward Good Behaviors, Punish Bad Behaviors

AlphaGo
Google DeepMind, 2015 – 18

Humanoid Locomotion
Radosavovic et al., 2013

Tokamak Control
Degrave et al., 2022

http://www.youtube.com/watch?v=eFoBfFhwo18

This Work: Simulated Robot Control

position, velocity → motor torques

acrobot hopper ant humanoid

DMC: Tassa et al., 2018 DeepMind Control Suite – gifs from https://github.com/facebookresearch/drqv2
MuJoCo: Brockman et al., 2016, https://github.com/openai/gym – gifs from https://gymnasium.farama.org/environments/mujoco/ 3

https://arxiv.org/abs/1801.00690
https://github.com/facebookresearch/drqv2
https://github.com/openai/gym
https://gymnasium.farama.org/environments/mujoco/

DoubleGum

● Bridges gap between reinforcement learning theory and practice
● New algorithm: effective, computationally efficient, simple to implement

4

RL Algorithms Reinforce/Repeat Behavior that are Rewarding

AgentEnvironment

5Image from https://gymnasium.farama.org/environments/mujoco/

https://gymnasium.farama.org/environments/mujoco/

RL Algorithms Reinforce/Repeat Behavior that are Rewarding

AgentEnvironment

6Image from https://gymnasium.farama.org/environments/mujoco/

https://gymnasium.farama.org/environments/mujoco/

RL Algorithms Reinforce/Repeat Behavior that are Rewarding

AgentEnvironment

7Image from https://gymnasium.farama.org/environments/mujoco/

https://gymnasium.farama.org/environments/mujoco/

RL Algorithms Reinforce/Repeat Behavior that are Rewarding

AgentEnvironment

8

Maximize Return

Image from https://gymnasium.farama.org/environments/mujoco/

https://gymnasium.farama.org/environments/mujoco/

9

RL Algorithms Maximize Expected Return

where and

10

RL Algorithms use a Q-Function to Maximize Expected Return

Measures quality of action a_t in s_t

where and

11

RL Algorithms use a Q-Function to Maximize Expected Return

Measures quality of action a_t in s_t

where and

12

RL Algorithms use a Q-Function to Maximize Expected Return

Measures quality of action a_t in s_t

where and

13

RL Algorithms use a Q-Function to Maximize Expected Return

Measures quality of action a_t in s_t

where and

14

RL Algorithms use a Q-Function to Maximize Expected Return

Measures quality of action a_t in s_t

where and

15

RL Algorithms use a Q-Function to Maximize Expected Return

Measures quality of action a_t in s_t

where and

16

Self-Consistency of the Q-Function

17

Self-Consistency of the Q-Function

18

Self-Consistency of the Q-Function

Proof Sketch: induction with base case:

and inductive step:

19

Deep RL Approximates Optimal Q-Function with NN

(Bellman Optimality Equation)

20

Deep RL Approximates Optimal Q-Function with NN

(Bellman Optimality Equation)

21

Deep RL Approximates Optimal Q-Function with NN

(Bellman Optimality Equation)

Note after presenting: Make it clearer that this MLE interpretation of the MSE loss applied to
Q-learning is my interpretation (from many), and that this is not presented in the papers that
applied MSE to Q-Learning [Riedmiller, 2005] and [Ernst, 2005]

22

Deep RL Approximates Optimal Q-Function with NN

(Bellman Optimality Equation)

Modelling Assumption of MSE does
not match empirical behavior!

23

Our Noise Model

Deep Q-Learning has an inaccurate noise model
We present a theoretically-grounded noise model leading to better performance

Standard Noise Model

1. Introduction

2. Derivation

3. Results

24

1. Introduction

2. Derivation
a. Of noise model
b. Of algorithm

3. Results

25

26

Noise Model Derivation Outline

27

Noise Model Derivation Outline

28

Noise Model Derivation Outline

Two Components of the DDPG Baseline Algorithm

29DDPG: Deep Deterministic Policy Gradients [Lillicrap et al., 2015]

One Neural Network:

https://arxiv.org/abs/1509.02971

Two Components of the DDPG Baseline Algorithm

30

Two Neural Networks:

Critic learns Q-Function:

Actor learns to maximize Q-Function:

DDPG: Deep Deterministic Policy Gradients [Lillicrap et al., 2015]

One Neural Network:

https://arxiv.org/abs/1509.02971

31

Noise Model Derivation Outline

32

Noise Model Derivation Outline

Quantify Noise Induced by Each Approximation

33

34

Assumption: Two Heteroscedastic Gumbel Noise Sources

35

36

Assumption: Two Heteroscedastic Gumbel Noise Sources

Extreme Value Theorem:
(if z unbounded)

37

Assumption: Two Heteroscedastic Gumbel Noise Sources

[Thrun and Schwarz, 1993]:

Ours:

https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf

Assumption: Two Heteroscedastic Gumbel Noise Sources

38

Assumption: Two Heteroscedastic Gumbel Noise Sources

39

Assumption: Two Heteroscedastic Gumbel Noise Sources

40

Typo: should be g_{\theta, a'} here

Assumption: Two Heteroscedastic Gumbel Noise Sources

41

Typo: should be g_{\theta, a'} here

Assumption: Two Heteroscedastic Gumbel Noise Sources

42

Typo: should be g_{\theta, a'} here

Assumption: Two Heteroscedastic Gumbel Noise Sources

where

43

Typo: should be g_{\theta, a'} here

Assumption: Two Heteroscedastic Gumbel Noise Sources

where

44

Typo: should be g_{\theta, a'} here

45

Assumption: Two Heteroscedastic Gumbel Noise Sources

where

Typo: should be g_{\theta, a'} here

46

DoubleGum Noise Model

where

1. Introduction

2. Derivation
a. Of noise model
b. Of algorithm

3. Results

47

48

Noise Model -> Loss Function

49

Noise Model -> Loss Function

Logistic Distribution

50

Noise Model -> Loss Function

Logistic Distribution

51

Noise Model -> Loss Function

Logistic Distribution

Scalar hyperparameter c

The DoubleGum Algorithm

52

1. c hyperparameter determined at beginning of training and fixed
2. Learn \beta and q using generalized method of moments

The DoubleGum Algorithm

53

1. c hyperparameter determined at beginning of training and fixed
2. Learn \beta and q using generalized method of moments

The DoubleGum Algorithm

54

1. c hyperparameter determined at beginning of training and fixed
2. Learn \beta and q using generalized method of moments

Moment-Matching loss function:

The DoubleGum Algorithm

55

1. c hyperparameter determined at beginning of training and fixed
2. Learn \beta and q using generalized method of moments

Q

s, a

Q(s, a) \beta(s, a)

Moment-Matching loss function:

Empirical Validity of DoubleGum Noise Model

56

(DDPG)

(Ours)

57

The DoubleGum Algorithm

1. c fixed hyperparameter determined at beginning of training
2. Learn \beta and q using generalized method of moments

where

1. Introduction

2. Derivation

3. Results

58

Four Simulated Robotics Suites

59

DeepMind Control
(DMC)

Locomotion

Movement, Joints + Control
(MuJoCo)

Locomotion

Meta-World

Manipulation

Box2D

Locomotion

DMC: Tassa et al., 2018 – gifs from https://github.com/facebookresearch/drqv2
MuJoCo: Brockman et al., 2016 – gifs from https://gymnasium.farama.org/environments/mujoco/

Meta-World: Yu et al., 2019
Box2D: https://gymnasium.farama.org/environments/box2d/

https://arxiv.org/abs/1801.00690
https://github.com/facebookresearch/drqv2
https://github.com/openai/gym
https://gymnasium.farama.org/environments/mujoco/
https://arxiv.org/abs/1910.10897
https://gymnasium.farama.org/environments/box2d/

Baselines

DoubleGum:

60

Baselines

DoubleGum:

DDPG:

61

Baselines

DoubleGum:

DDPG:

TD3:

62

Baselines

DoubleGum:

DDPG:

TD3:

SAC:

63

Baselines

DoubleGum:

DDPG:

TD3:

SAC:

64

Evaluation mode of DoubleGum: hyperparameter c=-0.1 fixed across all tasks

Benchmark on 33 Continuous Control Tasks, 4 Suites

65IQM: InterQuartile Mean +- 95% stratified bootstrap CIs. An aggregate metric, from [Agarwal et al., 2021]

https://github.com/google-research/rliable

66

Varying hyperparameter c

67

Varying c changes pessimism/optimism of target

where

68

Baselines: adjusting pessimism per suite

DoubleGum:

DDPG:

TD3:

SAC:

Best of DDPG/TD3

Apply Twin Networks to SAC

FinerTD3: i = {1, 2, 3, 4, 5}, select jth smallest value

Typo: should be \beta \mathbb{H} here

Benchmark on 33 Tasks: Adjusting Pessimism Per Suite

69

DoubleGum: simple, efficient, effective!

70

● Noise in Deep Q-Learning is shaped by two heteroscedastic Gumbel distributions

● Accounting for these distributions yields SOTA aggregate performance (AFAIK)

● Stable training across 33 continuous control environments

Questions: dythui2+drl@gmail.com
Code: https://github.com/dyth/doublegum

Thanks to Profs. Aaron Courville and Pierre-Luc Bacon + wider Mila community!

mailto:dythui2+drl@gmail.com
https://github.com/dyth/doublegum

