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In cooperative game theory, we denote an n-person coalitional game game by:

¡ := (N; v) (1)

Where:

 N =f1;2;:::; ng represents the finite set of players. It is also called the grand coalition.

 v: 2n!R is the characteristic function of the game and it satifies:

� v(N)>�i�N v(fig)

� v(;)= 0

The value function represents how much collective payoff a set of players
can gain by �cooperating� as a set.
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In cooperative game theory, we denote an n-person coalitional game game by:
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Given a game ¡ :=(N;v), a vector x=(x1; x2;:::; xn)2Rn of real numbers, and a coalition
S �N , we define:

x(S)=

( P
i2S xi if S=/ ;

0 if S= ;
(7)

Where:

 xi represents the payoff of player i

 x(S) represents the payoff of coalition S

x is called thepayoff vector (payoff for short).
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 We say that the payoff x2Rn is efficient if:
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 We say that the payoff x2Rn is efficient if:

x(N)=
X
i2N

xi= v(N)

 We say that the payoff x2Rn is individually rational if:

8i2N;xi> v(fig)
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Consider a group of n miners, who have discovered large bars of gold1:

 The miners can only do a single trip to fetch the gold.

 Two miners can carry one piece of gold together.

 The value function for coalition S is given by:

v(S)=

8<:
jS j
2
; if S is even:

(jS j ¡ 1)
2

; if S is odd:

1. This example was taken fromWikipedia :
https://en.wikipedia.org/wiki/Core_(game_theory)#Example_1:_Miners
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If there are 2 miners, i.e. S= f1; 2g, then the values of the different coalitions are:

 v(;)= 0  v(f1g)=0
 v(f2g)= 0  v(f1; 2g)= 1

One way to distribute the payoff in this situation is to simply split it evenly amongst the
miners, i.e. x=

¡ 1
2
;
1

2

�
.

If there were 3 miners instead, S= f1; 2; 3g:

 v(;)= 0  v(f1g)=0
 v(f2g)= 0  v(f3g)=0
 v(f1; 2g)= 1  v(f1; 3g)= 1
 v(f2; 3g)= 1  v(f1; 2; 3g)= 1

How should we distribute the payoff?
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 A coalitional game is said to be inessential if:

X
i=1

n

v(fig)= v(N) (11)

 and essential if: X
i=1

n

v(fig)<v(N) (12)

 From a game-theoretic viewpoint, inessential games are very simple. There is no tendency
for the players to form coalitions.

 So the unique possible payoff is x=(v(f1g); : : : ; v(fng)).
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Shapley values[7] are a solution concept in cooperative game theory that attempts to faily
distribute payoffs. It is defined as follows:

' i(v)=
1
n

X
S�N nfig

�
n¡ 1
jS j

�¡1
(v(S [fig)¡ v(S)) (17)

which can be interpreted as:

'i(v)=
1

numberofplayers

X
coalitionsexcluding i

marginal contributionof i tocoalition
numberof coalitionsexcluding iof this size
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Shapley values are the unique solution concept that satisfies the following 4 properties:

 Efficiency: The payoff vector exactly splits the total value:

x(N)=
X
i2N

xi= v(N) (28)

 Symmetry: If players i and j are equivalent in the sense that:

8S �N n fi; jg; v(S [fig)= v(S [fjg)

then:

'i(v)= 'j(v) (29)
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 Additivity: For two coalitional games v and w:

8i2N; 'i(v+w)= 'i(v)+ 'i(w) (36)

 Null Player: For a single player i, if:

8S �N n fig; v(S [fig)= v(S)

then:

'i(v)=0 (37)
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 Additivity: For two coalitional games v and w:

8i2N; 'i(v+w)= 'i(v)+ 'i(w) (40)
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Let's go back to our example with 3 miners, S= f1; 2; 3g:

 v(;)= 0  v(f1g)=0
 v(f2g)= 0  v(f3g)=0
 v(f1; 2g)= 1  v(f1; 3g)= 1
 v(f2; 3g)= 1  v(f1; 2; 3g)= 1

The Shapley values are:

 '1=
1

3

P
S�f2;3g

�
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�¡1
(v(S [f1g)¡ v(S))= 1

3

 '2=
1

3

 '3=
1

3



Example (Continued)

? 14 of 50

Let's go back to our example with 3 miners, S= f1; 2; 3g:

 v(;)= 0  v(f1g)=0
 v(f2g)= 0  v(f3g)=0
 v(f1; 2g)= 1  v(f1; 3g)= 1
 v(f2; 3g)= 1  v(f1; 2; 3g)= 1

The Shapley values are:

 '1=
1

3

P
S�f2;3g

�
2
jS j

�¡1
(v(S [f1g)¡ v(S))= 1

3

 '2=
1

3

 '3=
1

3



Example (Continued)

? 14 of 50

Let's go back to our example with 3 miners, S= f1; 2; 3g:

 v(;)= 0  v(f1g)=0
 v(f2g)= 0  v(f3g)=0
 v(f1; 2g)= 1  v(f1; 3g)= 1
 v(f2; 3g)= 1  v(f1; 2; 3g)= 1

The Shapley values are:

 '1=
1

3

P
S�f2;3g

�
2
jS j

�¡1
(v(S [f1g)¡ v(S))= 1

3

 '2=
1

3

 '3=
1

3



Shap ley va lues
for feature importance





Feature Importance as a Game

16 of 50

Given a model f :Rn!R with features x=(x1; x2;:::; xn), we can define a coalitional game
for feature importance as follows:

 The players are the features N = f1; 2; : : : ; ng

 The value function v is defined as some measure of the importance or influence of a subset
of features on the model's predictions.

For global feature importance, for a linear regression model we could define the value function
to represent the R2 of a linear model trained on a subset of features S .[4]

For local feature importance, many recently proposed define a value function that depends
on a specific data instance x to explain how each feature contributes to the output of the
function on this instance. The value of the grand coalition, in this setting, is the prediction
of the model at x: vf ;x(N)= f(x).
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on a specific data instance x to explain how each feature contributes to the output of the
function on this instance. The value of the grand coalition, in this setting, is the prediction
of the model at x: vf ;x(N)= f(x).
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Several methods have been proposed to apply the Shapley value to the problem of local feature
importance. Each of which defines the value function differently and this also determines what
happens to missing features i.e. features not in S:

 It can be defined as the conditional expected model output on a data instance when only
the features in S are known:

vf ;x(S)=ED[f(X)jXS=xs] (42)

 It can also be defined as the interventional (marginal) expected model output on a data
instance when features not in S are held fixed:

vf ;x(S)=ED[f(xS ; XS�)] (43)

Where S� is the complement of S in N i.e. S \S�= ; and S [S�=N
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SHAP (SHapley Additive exPlanations)[5] is a unified approach for local feature importance.

It unifies six previous methods: LIME, DeepLift, Shapley regression values, Shapley sampling
values, etc.

It uses the conditional expected model output on a data instance when only the features in
S are known as value function:

vf ;x(S)=E[f(X)jXS=xs] (52)
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It uses an additive explanation model g that is a linear function of simplified input features:

g(x0)= '0+
X
i=1

M

'ixi
0

(53)

Where:

 'i; i2f1; : : : ;M g are the Shapley values and '0=E[f(X)]

 M is the total number of simplified input features.

 x
02f0; 1gM is a boolean vector.

A value of 1 in the simplified input features means that the corresponding feature value
is �present� whereas a value of 0 means that it is �absent�.

We denote by h: f0; 1gM!Rn the mapping from simplified features to original features.
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SHAP satisfies the following 3 properties:

 Local Accuracy: It is the same as efficiency:

f(x)= g(x
0
)= '0+

X
i=1

M

'i (59)

 Missingness: If the simplified inputs represent feature presence, then missingness requires
features missing in the original input to have no impact:

xi
0
=0 ) 'i=0 (60)

In practice, this is only relevant for features that are constant.
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 Consistency: Consistency states that if a model changes so that some simplified input's
contribution increases or stays the same regardless of the other inputs, that input's impor-
tance should increase or stay the same.

Let fx(x
0)= f(h(x0)) and x¡i

0
denote setting xi

0
=0. For any two models f and f

0
, if:

8x02f0; 1gM ; fx(x
0)¡ fx(x¡i

0
)> fx

0
(x0)¡ fx

0
(x¡i
0
)

then:

'i(f ; x)> 'i(f
0
; x) (65)
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You may have noticed that, except for local accuracy, the properties listed for Shapley values
are not the same as the ones listed for SHAP. That can be explained as follows:

 In 1985, Young[10] showed that the linearity and null player properties can be replaced
by using a monotonicity property (Which is the same as the consistency property):

For any two value functions v and w, if for all coalitions S �N n fig:

v(S [fig)¡ v(S)>w(S [fig)¡w(S)

then:

'i(v)> 'i(w)

 In the supplementary material of the SHAP paper, the authors prove that the symmetry
property is also implied by the monotonicity property.
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The SHAP method has many variants, most of which are model-specific:

 Model-Agnostic Approximations:

� KernelSHAP

� Permutation SHAP

 Model-Specific Approximations:

� Linear SHAP

� Low-Order SHAP

� Max SHAP

� DeepSHAP

� TreeSHAP



KernelSHAP
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 The exact computation of SHAP values is challenging because it requires O(2n) evalua-
tions of the value function. Therefore we need to make some simplifying assumptions in
order to approximate it.

 KernalSHAP is a variant of SHAP that simplifies the computation by making 2 assump-
tions:

� Feature independence

� Model linearity

E[f(X)jXS=xS] = EXS�jXS=xS[f(X)]
� EXS�[f(X)]
� f(xS ; E[XS�])

 This changes the conditional expectation into a marginal expectation.
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It is based on Linear LIME[6] which is a method that fits a linear model around the data
instance of interest by perturbing it and using a weighting kernel to give more weight to
perturbed samples closer to it.

Figure 1. The black-box model's complex decision function (unknown to LIME) is represented by the
blue/pink background, which cannot be approximated well by a linear model. The bold red cross is
the instance being explained. LIME samples instances, gets predictions using the model, and weighs
them by the proximity to the instance being explained (represented here by size). The dashed line is
the learned explanation that is locally (but not globally) faithful.



Issues with
Shapley values
for explanation





Conditional versus interventional distributions
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Figure 2. Samples that might be drawn to estimate E[f(1; Y )] and E[f(X; 2)]to explain f(1; 2)

for some function f , given correlated Gaussian distributions for X and Y , depending on whether the
expectation is taken over X jY =2 and Y jX=1 (left) or X;Y (right)[2]



Issue with conditional distributions
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 The exact computation of the Shapley value for a conditional value function would require
knowledge of 2n different multivariate distributions, and so a significant amount of approx-
imation or modeling is necessary

 Even if computational issues are resolved, there are additional inconsistencies introduced
by the capacity of the Shapley value to attribute influence to an arbitrarily large feature
set given a single function.
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 Consider the addition of a redundant variable x3 to a dataset with two features, x1 and
x2, so that P (x3=x2)= 1.

 Suppose a model f(x1; x2; x3) is trained on all three features. Intuitively, the features x2
and x3 should be equally informative to the model and so should have the same Shapley
value under the conditional value function.

 Now consider what would happen if we defined a new function f
0(x1; x2)= f(x1; x2; x2)t

is effectively the same model for all in-distribution data points.

 Yet if we choose to limit the scope of our explanation to two variables instead of three,
the attribution for both x1 and x2 will come out to be different.
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 Methods which use an interventional value function fundamentally rely on evaluating a
model on out-of-distribution samples.

 Consider, for example, a model trained on a data set with three features: x1 and x2, both
N (0; 1), and an engineered feature x3=x1x2.

 To calculate vf ;x(f1; 2g) for some x = (x1; x2; x3), we would have to estimate
E[f(x1; x2; X3)] over some distribution for x3 which does not depend on x1 or x2.

 Therefore we will almost certainly have to evaluate f on some sample
fx1; x2; x3

0
g which does not respect x3

0
= x1x2 thus, it is well outside the domain of the

actual data distribution.
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 Consider for example applying it to a linear function with independent features:

f(x)= �0+ �1x1+ �2x2

 The value function for the coalition S= f1g:

vf ;x(S) = EXS�jxS[f(xS ; XS�)]
= EXS�[f(xS ; XS�)]
= f(xS ; E[XS�])
= �0+ �1x1+ �2E[X2]
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 The Shapley value intuitively aligns with what is considered important in an additive
setting with independent features.

 What if instead the features were correlated or the function was non-linear?

 Then our intuition breaks and using methods with simplifying assumptions
(e.g. KernelSHAP) could at best give us obviously wrong explanations and at worst a false
sense of trust.



Human-centric issues
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 Shapley value based feature attribution methods rely on mathematical correctness to
justify their usefulness.

 Shapley value based methods do not explicitly attempt to provide guidance how a user
might alter one's behavior in a desirable way. Further, observing that a certain feature
carries a large influence over the model does not necessarily imply that changing that
feature (even significantly) will change the outcome favorably.
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Figure 3. Example of an alert processing task in SHAP condition. In the NoSHAP condition, only
the left part of the figure is shown[9].
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 Weerts et al.[9] conducted a human-grounded evaluation to determine the utility of SHAP
for domain experts who assess the correctness of predictions, such as in medical diagnosis
and fraud detection.

 Real humans performed simplified alert processing tasks, with and without an explanation
of the model's prediction.

 In contrast to common assumptions, they did not find a significant difference in alert
processing performance between tasks for which a SHAP explanation was shown and tasks
for which it was not shown.



Possible solutions
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 Shapley Residuals :[3]

Provides a method to compute a residual that act as a warning to practitioners against
overestimating the degree to which Shapley-value-based explanations give them insight
into a model.

 Shapley on the Data Manifold :[1]

Provides two solutions to Shapley explainability that respect the data manifold.

One solution, based on generative modelling, provides flexible access to data imputations;
the other directly learns the Shapley value-function, providing performance and stability
at the cost of flexibility.



Shapley residuals
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 Shapley Residuals are vector-valued objects that capture a specific type of quantitative
information lost by Shapley values.

 It is based on the concept of inessential games. It uses the degree to which a game is not
inessential to provide insights into where Shapley values are not able to capture feature
influence.

 When the residual of a feature exhibits a large norm, the associated Shapley value should
be taken with skepticism: the resulting importance is not just due to the variable acting
by itself.

 On the other hand, if a residual is small, most of the effect of the variable on the model
is explainable by the variable acting independently.



Shapley residuals

40 of 50

 Consider two models f1 and f2:

f1(x1; x2; x3) = x1+x2+x3

f2(x1; x2; x3) = x1+2x2x3

 Suppose we use KernelSHAP to compute local feature importances for the output

f1(1; 1; 1)= 3 or f2(1; 1; 1)= 3

 For both models, the Shapley values for the 3 features are all 1.

 Despite that, intervening by increasing the value of x2 changes f2 more than increasing
the value of x1; in f1, this clearly does not happen.



Shapley residuals
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 We start by visualizing the game as a function over the vertices of a n-dimensional
hypercube

 Each coordinate corresponds to the presence or absence of a certain player, and each
vertex corresponds to a subset of players.

Figure 4. Visualizing the game and gradient of the game corresponding to the example.
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 We can think of the set N as the n-dimensional hypercube G = (V = N ; E)
with each vertex labeled by a set S and edges between sets S and S [fig.

 Let RV be the space of functions from V to R and let RE be the space of functions from
E to R. In particular, the game v is an element of RV .

 The differential operator r:RV !RE is then defined as

rvi=rv(S; S [fig)= v(S [fig)¡ v(S):

Essentially it is a discrete gradient operator on G, mapping functions on vertices to
functions on edges.



Shapley residuals
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 We will also define a partial gradient ri:RV !RE:

riv(S; S [fjg)=
�
v(S [fjg)¡ v(S); if i= j
0; otherwise

(66)

Intuitively, ri evaluates a gradient for edges corresponding to the insertion of i, and takes
the value 0 everywhere else. On the hypercube, only edges on the ith axis of riv will take
a nonzero value.



Shapley residuals
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 A game v is inessential if and only if for each i there exists vi2RV such that riv=rvi .[8]

 If v is not inessential, we cannot be sure to find vi such that riv=rvi, but we can find
the �closest� one as the solution to the least squares problem:

min
x2RV ;x(;)=0

krx¡rivk (67)

 Given vi, the game v can be decomposed as:
P
vi= v

 And the shapley values are given by: 'i(v)= vi([d])
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 We call ri=riv¡rvi the Shapley residual of player i.

 v is inessential iff ri=0 for each i

 The last statement allow us to interpert
P

i2N krik
2 as the deviation from inessentiality

of v.
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(a) The decomposition of a game proposed by
Stern and Tettenhorst

(b) The construction of Shapley residuals

Figure 5.
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 The good:

� Shapley values are a unique and fair method to distribute payoffs that satisfy certain
properties.

� SHAP provides a unified approach for local feature importances with desirable prop-
erties.

� Shapley residuals provide a way to measure how much trust we should put into the
provided feature importances.

 The bad and the ugly:

� Tradeoff between computational complexity and correctness.

� Conditional vs Interventional (Marginal) distributions.

� Additivity property is only really needed for the uniqueness of the Shapley value.



Thank you
for your attention!
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