## An accuracy-interpretability tradeoff?

Why less can be more and how to find it

- Disclaimer and preliminaries
- The many problems of black boxes
- Simple models for the win
- When is it worth the effort?
- Coda: risks of interpretability
$4$


## A fundamental distinction

- Interpretable ML: "not a black box"
- Explainable ML: use a proxy to explain a black box


## A fundamental distinction

- Interpretable ML: "not a black box"
- Explainable ML: use a proxy to explain a black box

A machine learning model is interpretable if it is constrained to make it "easier to understand" for user X

## A fundamental distinction

- Interpretable ML: "not a black box"
- Explainable ML: use a proxy to explain a black box

A machine learning model is interpretable if it is constrained to make it "easier to understand" for user X

- Many choices: sparsity, degree of non-linearity, low-order interactions...
- Domain- and user-specific

To show why we should
prefer interpretability over explanations,
to see examples where
this does not necessarily incur a performance penalty,
and to look at some
theory supporting this preference.

## A chamber of horrors

- Bad medical diagnosis / screening / treatments
- Unjust bail / parole decisions
- Wrong loan / credit decisions


## A chamber of horrors

- Bad medical diagnosis / screening / treatments
- Unjust bail / parole decisions
- Wrong loan / credit decisions


## Because of typos (!)

Stop explaining black box machine learning models for high stakes decisions..

## A chamber of horrors

- Bad medical diagnosis / screening / treatments
- Unjust bail / parole decisions
- Wrong loan / credit decisions


## Because of typos (!)

Stop explaining black box machine learning models for high stakes decisions...

## Because of bogus explanations

Incorrect recommendations with easily interpretable explanations lead to reduction in treatment selection accuracy

## A chamber of horrors

- Bad medical diagnosis / screening / treatments
- Unjust bail / parole decisions
- Wrong loan / credit decisions


## Because of typos (!)

Stop explaining black box machine learning models for high stakes decisions..

## Because of bogus explanations

Incorrect recommendations with easily interpretable explanations lead to reduction in treatment selection accuracy
(...)

## Black boxes and their "explanations"

- XAI: posthoc proxies for black boxes, e.g. LIME


## Black boxes and their "explanations"

- XAI: posthoc proxies for black boxes, e.g. LIME
- Explaining a BB: now trust two models (and the data)


## Black boxes and their "explanations"

- XAI: posthoc proxies for black boxes, e.g. LIME
- Explaining a BB: now trust two models (and the data)
- Proxies won't be $100 \%$ accurate by definition
- XAI: posthoc proxies for black boxes, e.g. LIME
- Explaining a BB: now trust two models (and the data)
- Proxies won't be $100 \%$ accurate by definition
- At best: ineffective/nonsensical, e.g. different domains for features
- XAI: posthoc proxies for black boxes, e.g. LIME
- Explaining a BB: now trust two models (and the data)
- Proxies won't be $100 \%$ accurate by definition
- At best: ineffective/nonsensical, e.g. different domains for features
- At worst: detrimental (under/overreliance, see later)
- XAI: posthoc proxies for black boxes, e.g. LIME
- Explaining a BB: now trust two models (and the data)
- Proxies won't be $100 \%$ accurate by definition
- At best: ineffective/nonsensical, e.g. different domains for features
- At worst: detrimental (under/overreliance, see later)
- BBs hinder the cyclic nature of ML development

Collect data, pre-process \& model, evaluate, rinse, repeat
$\Rightarrow$ Better understanding of the model leads to better models

## Black boxes and their "explanations"

- XAI: posthoc proxies for black boxes, e.g. LIME
- Explaining a BB: now trust two models (and the data)
- Proxies won't be $100 \%$ accurate by definition
- At best: ineffective/nonsensical, e.g. different domains for features
- At worst: detrimental (under/overreliance, see later)
- BBs hinder the cyclic nature of ML development

Collect data, pre-process \& model, evaluate, rinse, repeat
$\Rightarrow$ Better understanding of the model leads to better models

> But we probably don't need BBs anyway

## A zoo of interpretable models

- Rule lists
- Sparse scoring systems
- Sparse decision trees
- Hierarchical models
- Multilevel Bayesian modeling
- Prototypes and concepts


## Rule lists



Rules are tuples of associations, $r_{k}=p_{k} \rightarrow q_{k}$, followed by a default rule $r_{0}$
if (age $=18-20)$ and $($ sex $=$ male $)$ then predict yes $\quad$ if $p_{1}$ then predict $q_{1}$ else if (age $=21-23$ ) and (priors $=2-3$ ) then predict yes else if (priors $>3$ ) then predict yes else predict no
else if $p_{2}$ then predict $q_{2}$ else if $p_{3}$ then predict $q_{3}$ else predict $q_{0}$

## Rule lists



Rules are tuples of associations, $r_{k}=p_{k} \rightarrow q_{k}$, followed by a default rule $r_{0}$

$$
\begin{array}{ll}
\text { if }(\text { age }=18-20) \text { and }(\text { sex }=\text { male }) \text { then predict yes } & \text { if } p_{1} \text { then predict } q_{1} \\
\text { else if }(\text { age }=21-23) \text { and } \text { (priors }=2-3) \text { then predict yes } & \text { else if } p_{2} \text { then predict } q_{2} \\
\text { else if } \text { (priors }>3) \text { then predict yes } & \text { else if } p_{3} \text { then predict } q_{3} \\
\text { else predict no } & \text { else predict } q_{0}
\end{array}
$$

corels matches / beats compas with three rules
Branch \& bound to search among pre-mined rules
Limiting factor: \# of features ( $\sim 30$ )

Prediction of re-arrest within 2 years


## Rule lists



Rules are tuples of associations, $r_{k}=p_{k} \rightarrow q_{k}$, followed by a default rule $r_{0}$

$$
\begin{aligned}
& \text { if }(\text { age }=18-20) \text { and }(\text { sex }=\text { male }) \text { then predict yes } \\
& \text { else if }(\text { age }=21-23) \text { and }(\text { priors }=2-3) \text { then predict yes } \\
& \text { else if }(\text { priors }>3) \text { then predict yes } \\
& \text { else predict } n o
\end{aligned}
$$

if $p_{1}$ then predict $q_{1}$ else if $p_{2}$ then predict $q_{2}$ else if $p_{3}$ then predict $q_{3}$ else predict $q_{0}$
corels matches / beats compas with three rules [2]
Branch \& bound to search among pre-mined rules Limiting factor: \# of features ( $\sim 30$ )
"Optimal decision lists using SAT"
[19]
Learns rules, off-the-shelf solver, perfect or sparse

Prediction of re-arrest within 2 years


## Sparse scoring systems

- 2 HELPS 2 B for seizure risk prediction. Equal accuracy to SoTA, doctors can decide to ignore recommendations, can recalibrate with new variables

| 1. | Any cEEG Pattern with Frequency $>\mathbf{~} 2 \mathbf{H z}$ | 1 point |  |
| :--- | :--- | :--- | :--- |
| 2. | Epileptiform Discharges | 1 point | + |
| 3. | Patterns include LPD or LRDA or BIPD | 1 point | + |
| 4. | Patterns Superimposed with Fast, or Sharp Activity | 1 point | + |
| 5. | Prior Seizures | 1 point | + |
| 6. | Brief Rhythmic Discharges | 2 points | + |
|  |  | SCORE | $=$ |


| SCORE | 0 | 1 | 2 | 3 | 4 | 5 | $6+$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RISK | $<5 \%$ | $12 \%$ | $27 \%$ | $50 \%$ | $73 \%$ | $88 \%$ | $>95 \%$ |

5-CV mean test CAL/AUC of $2.7 \% / 0.819$

## Sparse scoring systems

- 2helps2B for seizure risk prediction. Equal accuracy to SoTA, doctors can decide to ignore recommendations, can recalibrate with new variables

| 1. Any cEEG Pattern with Frequency $>2 \mathbf{H z}$ <br> 2. Epileptiform Discharges <br> 3. Patterns include LPD or LRDA or BIPD <br> 4. Patterns Superimposed with Fast, or Sharp Activity <br> 5. Prior Seizures <br> 6. Brief Rhythmic Discharges |  |  |  |  |  |  | $\begin{gathered} 1 p \\ 2 p o \end{gathered}$ |  | + + + + + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | SCO |  | $=$ |
|  | SCORE | 0 | 1 | 2 | 3 | 4 | 5 |  |  |
|  | RISK | <5\% | 12\% | 27\% | 50\% | 73\% | 88 \% |  | 5\% |
| 5-CV mean test CAL/AUC of $2.7 \% / 0.819$ |  |  |  |  |  |  |  |  |  |

- Clinical decision, risk assessment, infrastructure reliability, repair crews... (HITL)


## Sparse scoring systems

- 2helps2b for seizure risk prediction. Equal accuracy to SoTA, doctors can decide to ignore recommendations, can recalibrate with new variables

| 1. | Any cEEG Pattern with Frequency $>\mathbf{2 ~ H z}$ | 1 point |  | $\ldots$ |
| :--- | :--- | ---: | :--- | :--- |
| 2. | Epileptiform Discharges | 1 point | + | $\ldots$ |
| 3. | Patterns include LPD or LRDA or BIPD | 1 point | + | $\ldots$ |
| 4. | Patterns Superimposed with Fast, or Sharp Activity | 1 point | + | $\ldots$ |
| 5. | Prior Seizures | 1 point | + | $\ldots$ |
| 6. | Brief Rhythmic Discharges | 2 points | + |  |
|  |  | SCORE | $=$ |  |


| SCORE | 0 | 1 | 2 | 3 | 4 | 5 | $6+$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RISK | $<5 \%$ | $12 \%$ | $27 \%$ | $50 \%$ | $73 \%$ | $88 \%$ | $>95 \%$ |

5-CV mean test CAL/AUC of $2.7 \% / 0.819$

- Clinical decision, risk assessment, infrastructure reliability, repair crews... (HITL)
- Risk-SLIM: sparse, linear, small integer coefficients, calibrated, high rank accuracy [16]

$$
\min _{\theta} \underbrace{\hat{R}(\theta ; S)}_{\text {logistic loss }}+\lambda\|\theta\|_{0} \text {, s.t. } \theta \text { admissible and in } \mathbb{Z}^{d+1}
$$

## Sparse scoring systems (contd.)

About the admissible set:

| Model Requirement | Example |
| :--- | :--- |
| Feature Selection | Choose between 5 to 10 total features |
| Group Sparsity | Include either male or female in the model but not both |
| Optimal Thresholding | Use at most 3 thresholds for a set of indicator variables: $\sum_{k=1}^{100} \mathbb{1}[$ age $\leq k] \leq 3$ |
| Logical Structure | If male is in model, then include hypertension or $b m i \geq 30$ |
| Side Information | Predict $\operatorname{Pr}(y=+1 \mid \boldsymbol{x}) \geq 0.90$ when male $=$ TRUE and hypertension $=$ TRUE |

Table 1: Model requirements that can be addressed by adding operational constraints to RIskSumMINLP.

## Sparse trees

- Classical tree algorithms: top-down, greedy back-tracking pruning


## Sparse trees

- Classical tree algorithms: top-down, greedy back-tracking pruning
- (Generalised) Optimal Sparse Decision Trees

$$
\min _{\tau \in \text { trees }} \underbrace{\hat{R}(\tau ; S)}_{\text {misclassification }}+\lambda \underbrace{|\tau|}_{\text {\#leaves in } \tau}
$$

Certificate of optimality: no better training performance possible at sparsity level

## Sparse trees

- Classical tree algorithms: top-down, greedy back-tracking pruning
- (Generalised) Optimal Sparse Decision Trees

$$
\min _{\tau \in \text { trees }} \underbrace{\hat{R}(\tau ; S)}_{\text {misclassification }}+\lambda \underbrace{|\tau|}_{\text {\#leaves in } \tau}
$$

Certificate of optimality: no better training performance possible at sparsity level
Branch \& bound with: strong analytical bounds, caching, leaf representation, fast impl.
Followup gosdt: continuous variables and imbalanced data

## Sparse trees

- Classical tree algorithms: top-down, greedy back-tracking pruning
- (Generalised) Optimal Sparse Decision Trees

$$
\min _{\tau \in \text { trees }} \underbrace{\hat{R}(\tau ; S)}_{\text {misclassification }}+\lambda \underbrace{|\tau|}_{\text {\#leaves in } \tau}
$$

Certificate of optimality: no better training performance possible at sparsity level
Branch \& bound with: strong analytical bounds, caching, leaf representation, fast impl.
Followup gosdt: continuous variables and imbalanced data

- Followup: Optimal sparse regression trees


## Hierarchical models

- Aggregation of simple models (e.g. stacked logistic regression)
- Example: two-layer additive risk model

Learned "subscale features"

## dukedatasciencefico.cs.duke.edu

Global Model

Below is our Input Panel. Click on variable names or check Appendix for more details. Model will take a few seconds to run.

## Run Model



Original Features
These are 23 original features
given in the dataset.


## Subscale Features

These are 10 composite features obtained from the previous 23 orginal features.

## Output

This is the Risk Performance estimated from our model, which consists of only two outcomes: Good and Bad.

## Example-based reasoning

- Prototype images



## Example-based reasoning

- Prototype images

- Issues: latent representations

(a) ResNet-18

(b) ResNet-34

(c) VGG-19


## Example-based reasoning

- Concept bottlenecks (loss of accuracy)


## Example-based reasoning

- Concept bottlenecks (loss of accuracy)



## Example-based reasoning

- Concept bottlenecks (loss of accuracy)

- Concept embeddings (still prescribed concepts)



## So ... is there a tradeoff?

- Simple, interpretable models can match black boxes
- With tabular data
- With image data


## So... is there a tradeoff?

- Simple, interpretable models can match black boxes
- With tabular data
- With image data
- Typically intractable, might require domain knowledge. But $\exists$ off-the-shelf solutions


## So ... is there a tradeoff?

- Simple, interpretable models can match black boxes
- With tabular data
- With image data
- Typically intractable, might require domain knowledge. But $\exists$ off-the-shelf solutions
- [move to end Black boxes are sometimes necessary, sometimes better, sometimes worse


## So... is there a tradeoff?

- Simple, interpretable models can match black boxes
- With tabular data
- With image data
- Typically intractable, might require domain knowledge. But $\exists$ off-the-shelf solutions
- [move to end Black boxes are sometimes necessary, sometimes better, sometimes worse
- How can we reason about this?

Can we predict whether an interpretable model exists?

## What can SLT tell us?

Dataset $S:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\},(X, Y) \sim \mathcal{D}$
Hypothesis class $\mathcal{F} \subset Y^{X}$
Optimal $f^{\star} \in \mathcal{F}$ minimises risk $R(f):=\mathbb{E}_{\mathcal{D}}[l(f(X), Y)]$, for some loss $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$.

- Minimise empirical risk $\hat{R}_{S}(f):=\frac{1}{n} \sum l\left(f\left(x_{i}\right), y_{i}\right)$ to obtain estimator $f_{S}:=f(S) \in \mathcal{F}$.


## What can SLT tell us?

Dataset $S:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\},(X, Y) \sim \mathcal{D}$
Hypothesis class $\mathcal{F} \subset Y^{X}$
Optimal $f^{\star} \in \mathcal{F}$ minimises risk $R(f):=\mathbb{E}_{\mathcal{D}}[l(f(X), Y)]$, for some loss $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$.

- Minimise empirical risk $\hat{R}_{S}(f):=\frac{1}{n} \sum l\left(f\left(x_{i}\right), y_{i}\right)$ to obtain estimator $f_{S}:=f(S) \in \mathcal{F}$.
- Interpretable model class $\mathcal{F}_{I} \subsetneq \mathcal{F}$


## What can SLT tell us?

Dataset $S:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\},(X, Y) \sim \mathcal{D}$
Hypothesis class $\mathcal{F} \subset Y^{X}$
Optimal $f^{\star} \in \mathcal{F}$ minimises risk $R(f):=\mathbb{E}_{\mathcal{D}}[l(f(X), Y)]$, for some loss $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$.

- Minimise empirical risk $\hat{R}_{S}(f):=\frac{1}{n} \sum l\left(f\left(x_{i}\right), y_{i}\right)$ to obtain estimator $f_{S}:=f(S) \in \mathcal{F}$.
- Interpretable model class $\mathcal{F}_{I} \subsetneq \mathcal{F}$
- trees of depth $\leqslant k$
- linear classifiers with $|\theta|_{0} \leqslant k$
- classifiers that can be well approximated by some class of surrogates (...)
- Leaves out: dependency of $\mathcal{F}_{I}$ on the data (local interpretability), different user groups


## What can SLT tell us?

Dataset $S:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\},(X, Y) \sim \mathcal{D}$
Hypothesis class $\mathcal{F} \subset Y^{X}$
Optimal $f^{\star} \in \mathcal{F}$ minimises risk $R(f):=\mathbb{E}_{\mathcal{D}}[l(f(X), Y)]$, for some loss $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$.

- Minimise empirical risk $\hat{R}_{S}(f):=\frac{1}{n} \sum l\left(f\left(x_{i}\right), y_{i}\right)$ to obtain estimator $f_{S}:=f(S) \in \mathcal{F}$.
- Interpretable model class $\mathcal{F}_{I} \subsetneq \mathcal{F}$
- trees of depth $\leqslant k$
- linear classifiers with $|\theta|_{0} \leqslant k$
- classifiers that can be well approximated by some class of surrogates (...)
- Leaves out: dependency of $\mathcal{F}_{I}$ on the data (local interpretability), different user groups
- Can we predict whether we will lose accuracy with $\mathcal{F}_{I}$ ?


## What can SLT tell us?

- $\mathcal{F}_{I} \subsetneq \mathcal{F}$


## What can SLT tell us?

- $\mathcal{F}_{I} \subsetneq \mathcal{F}$
$\Rightarrow$ Best risk in $\mathcal{F}_{I}=: R_{I}^{\star} \geqslant R^{\star}:=$ best risk in $\mathcal{F}$ (modelling bias) ... Is that it?


## What can SLT tell us?

- $\mathcal{F}_{I} \subsetneq \mathcal{F}$
$\Rightarrow$ Best risk in $\mathcal{F}_{I}=: R_{I}^{\star} \geqslant R^{\star}:=$ best risk in $\mathcal{F}$ (modelling bias) ... Is that it?
- $R(f) \leqslant \hat{R}(f)+\mathcal{O}(\sqrt{C / n})$ with $C=\mathcal{O}(\log$ "capacity" $(\mathcal{F})))$
$\Rightarrow$ Better generalization for $\mathcal{F}_{I} \subsetneq \mathcal{F} \ldots$ ??


## What can SLT tell us?

- $\mathcal{F}_{I} \subsetneq \mathcal{F}$
$\Rightarrow$ Best risk in $\mathcal{F}_{I}=: R_{I}^{\star} \geqslant R^{\star}:=$ best risk in $\mathcal{F}$ (modelling bias) ... Is that it?
- $R(f) \leqslant \hat{R}(f)+\mathcal{O}(\sqrt{C / n})$ with $\left.C=\mathcal{O}\left(\log ^{\text {"capacity" }}(\mathcal{F})\right)\right)$
$\Rightarrow$ Better generalization for $\mathcal{F}_{I} \subsetneq \mathcal{F} \ldots$ ??
- Let $\hat{f}_{I} \in \underset{f \in \mathcal{F}_{I}}{\operatorname{argmin}} \hat{R}_{S}(f)$ and $\hat{f} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}_{S}(f)$. The gap $R\left(\hat{f}_{I}\right)-R(\hat{f})$ depends on: $\quad$ [6]


## What can SLT tell us?

- $\mathcal{F}_{I} \subsetneq \mathcal{F}$
$\Rightarrow$ Best risk in $\mathcal{F}_{I}=: R_{I}^{\star} \geqslant R^{\star}:=$ best risk in $\mathcal{F}$ (modelling bias) ... Is that it?
- $R(f) \leqslant \hat{R}(f)+\mathcal{O}(\sqrt{C / n})$ with $C=\mathcal{O}(\log$ "capacity" $(\mathcal{F})))$
$\Rightarrow$ Better generalization for $\mathcal{F}_{I} \subsetneq \mathcal{F} \ldots$ ??
- Let $\hat{f}_{I} \in \underset{f \in \mathcal{F}_{I}}{\operatorname{argmin}} \hat{R}_{S}(f)$ and $\hat{f} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}_{S}(f)$. The gap $R\left(\hat{f}_{I}\right)-R(\hat{f})$ depends on:
a) Increase in modeling bias $R_{I}^{\star}-R^{\star} \geqslant 0$
b) Change in estimation error $R\left(\hat{f}_{I}\right)-R_{I}^{\star}$ vs $R(\hat{f})-R^{\star}$

This depends on the capacity of $\mathcal{F}_{I}$ and dataset size $\Rightarrow$ can be small

## What can SLT tell us?

- $\mathcal{F}_{I} \subsetneq \mathcal{F}$
$\Rightarrow$ Best risk in $\mathcal{F}_{I}=: R_{I}^{\star} \geqslant R^{\star}:=$ best risk in $\mathcal{F}$ (modelling bias) ... Is that it?
- $R(f) \leqslant \hat{R}(f)+\mathcal{O}(\sqrt{C / n})$ with $C=\mathcal{O}(\log$ "capacity" $(\mathcal{F})))$
$\Rightarrow$ Better generalization for $\mathcal{F}_{I} \subsetneq \mathcal{F} \ldots$ ??
- Let $\hat{f}_{I} \in \underset{f \in \mathcal{F}_{I}}{\operatorname{argmin}} \hat{R}_{S}(f)$ and $\hat{f} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}_{S}(f)$. The gap $R\left(\hat{f}_{I}\right)-R(\hat{f})$ depends on: [6]

$$
\begin{equation*}
f \in \mathcal{F}_{I} \quad f \in \mathcal{F} \tag{6}
\end{equation*}
$$

a) Increase in modeling bias $R_{I}^{\star}-R^{\star} \geqslant 0$
b) Change in estimation error $R\left(\hat{f}_{I}\right)-R_{I}^{\star}$ vs $R(\hat{f})-R^{\star}$

This depends on the capacity of $\mathcal{F}_{I}$ and dataset size $\Rightarrow$ can be small

$$
\text { Derived from Excess risk: } R\left(f_{S}\right)-R^{\star}=\underbrace{R_{I}^{\star}-R^{\star}}_{\text {modelling bias }}+\underbrace{R\left(f_{S}\right)-R_{I}^{\star}}_{\text {estimation error }}
$$

## The effect of ERM

- Recall $\hat{f}_{I} \in \underset{f \in \mathcal{F}_{I}}{\operatorname{argmin}} \hat{R}_{S}(f)$ and $\hat{f} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}_{S}(f)$.


## The effect of ERM

- Recall $\hat{f}_{I} \in \underset{f \in \mathcal{F}_{I}}{\operatorname{argmin}} \hat{R}_{S}(f)$ and $\hat{f} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}_{S}(f)$.
- The gap $R\left(\hat{f}_{I}\right)-R(\hat{f})$ can also be seen to depend on:
a) Change in empirical risk $\hat{R}\left(\hat{f}_{I}\right)-\hat{R}(\hat{f})$
b) Change in generalization error $R\left(\hat{f}_{I}\right)-\hat{R}\left(\hat{f}_{I}\right)$ vs $R(\hat{f})-\hat{R}(\hat{f})$

Will depend on dataset size and capacity of $\mathcal{F}$

## The effect of ERM

- Recall $\hat{f}_{I} \in \underset{f \in \mathcal{F}_{I}}{\operatorname{argmin}} \hat{R}_{S}(f)$ and $\hat{f} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}_{S}(f)$.
- The gap $R\left(\hat{f}_{I}\right)-R(\hat{f})$ can also be seen to depend on:
a) Change in empirical risk $\hat{R}\left(\hat{f}_{I}\right)-\hat{R}(\hat{f})$
b) Change in generalization error $R\left(\hat{f}_{I}\right)-\hat{R}\left(\hat{f}_{I}\right)$ vs $R(\hat{f})-\hat{R}(\hat{f})$

Will depend on dataset size and capacity of $\mathcal{F}$
Derived from standard generalization bounds $R(f) \leqslant \hat{R}(f)+\mathcal{O}(\sqrt{C / n})$
"Conclusions" from SLT

- Dependence on sample size and capacity


## "Conclusions" from SLT

- Dependence on sample size and capacity
- Change hard to quantify
"Conclusions" from SLT
- Dependence on sample size and capacity
- Change hard to quantify
- SLT bounds look at $|R(\hat{f})-\hat{R}(\hat{f})|$. We want: $\left|R^{\star}-\hat{R}\left(\hat{f}_{I}\right)\right|$


## "Conclusions" from SLT

- Dependence on sample size and capacity
- Change hard to quantify
- SLT bounds look at $|R(\hat{f})-\hat{R}(\hat{f})|$. We want: $\left|R^{\star}-\hat{R}\left(\hat{f}_{I}\right)\right|$
- So... Not very informative


## "Conclusions" from SLT

- Dependence on sample size and capacity
- Change hard to quantify
- SLT bounds look at $|R(\hat{f})-\hat{R}(\hat{f})|$. We want: $\left|R^{\star}-\hat{R}\left(\hat{f}_{I}\right)\right|$
- So... Not very informative


## Can we do better?

## The Rashomon set

- Observation

Often, if the data represent well the problem, most models perform similarly

## The Rashomon set

- Observation

Often, if the data represent well the problem, most models perform similarly

- The (empirical) Rashomon set is the set of almost-optimal models

$$
\hat{\mathfrak{R}}(\mathcal{F}, \gamma):=\left\{f \in \mathcal{F}: \hat{R}(f)-\hat{R}^{\star} \leqslant \gamma\right\}
$$



- Observation

Often, if the data represent well the problem, most models perform similarly

- The (empirical) Rashomon set is the set of almost-optimal models

$$
\hat{\mathfrak{R}}(\mathcal{F}, \gamma):=\left\{f \in \mathcal{F}: \hat{R}(f)-\hat{R}^{\star} \leqslant \gamma\right\}
$$



- Hypothesis
if many models perform similarly well, then there usually is an interpretable one


## The Rashomon ratio

The Rashomon ratio is the fraction of models that have low loss

$$
\mathfrak{R a}(\mathcal{F}, \gamma):=\frac{|\hat{\mathfrak{R}}(\mathcal{F}, \gamma)|}{|\mathcal{F}|}
$$

$$
=\frac{\left|\left\{f \in \mathcal{F}: \hat{R}(f)-\hat{R}^{\star} \leqslant \gamma\right\}\right|}{|\mathcal{F}|}
$$

## The Rashomon ratio

The Rashomon ratio is the fraction of models that have low loss

$$
\mathfrak{R a}(\mathcal{F}, \gamma):=\frac{|\hat{\mathfrak{R}}(\mathcal{F}, \gamma)|}{|\mathcal{F}|} \quad=\frac{\left|\left\{f \in \mathcal{F}: \hat{R}(f)-\hat{R}^{\star} \leqslant \gamma\right\}\right|}{|\mathcal{F}|}
$$

Theorem. If $\exists \hat{f}_{I} \in \hat{\mathfrak{R}}(\mathcal{F}, \gamma)$ then with high probability

$$
\left|\hat{R}\left(\hat{f}_{I}\right)-R^{\star}\right| \leqslant \gamma+\mathcal{O}\left(\sqrt{\log \left(\left|\mathcal{F}_{I}\right|\right) / n}\right)
$$

## The Rashomon ratio

The Rashomon ratio is the fraction of models that have low loss

$$
\mathfrak{R a}(\mathcal{F}, \gamma):=\frac{|\hat{\mathfrak{R}}(\mathcal{F}, \gamma)|}{|\mathcal{F}|} \quad=\frac{\left|\left\{f \in \mathcal{F}: \hat{R}(f)-\hat{R}^{\star} \leqslant \gamma\right\}\right|}{|\mathcal{F}|}
$$

Theorem. If $\exists \hat{f}_{I} \in \hat{\mathfrak{R}}(\mathcal{F}, \gamma)$ then with high probability

$$
\left|\hat{R}\left(\hat{f}_{I}\right)-R^{\star}\right| \leqslant \gamma+\mathcal{O}\left(\sqrt{\log \left(\left|\mathcal{F}_{I}\right|\right) / n}\right)
$$

Theorem. Assume that $\mathcal{F}_{I}$ is "dense enough" in $\hat{\mathfrak{R}}(\mathcal{F}, \gamma)$, and $\hat{\mathfrak{R}}(\mathcal{F}, \gamma)$ is "wide enough". With prob $1-\varepsilon$ there exist $f_{1}, \ldots, f_{m} \in \mathcal{F}_{I}$ s.t.

$$
\left|R\left(f_{i}\right)-\hat{R}\left(f_{i}\right)\right| \leqslant C \operatorname{Rad}\left(\mathcal{F}_{I}\right)+\mathcal{O}(\sqrt{\log (1 / \varepsilon) / n})
$$

## Rashomon curves

Some empirical observations across many datasets
Tower of model classes $\mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{k} \subset \mathcal{F}$
As $\mathfrak{R a}\left(\mathcal{F}_{i}, \gamma\right)=\frac{\left|\hat{\mathfrak{R}}\left(\mathcal{F}_{i}, \gamma\right)\right|}{\left|\mathcal{F}_{i}\right|}$ [decreases (higher $\left|\mathcal{F}_{i}\right|$ ), so does $\hat{R}$ up until the "elbow", see video]

After some point, all $\mathcal{F}$ perform equally, and higher $\left|\mathcal{F}_{i}\right|$ worsens generalization

## Rashomon curves

Some empirical observations across many datasets
Tower of model classes $\mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{k} \subset \mathcal{F}$
As $\mathfrak{R a}\left(\mathcal{F}_{i}, \gamma\right)=\frac{\left|\hat{\mathfrak{R}}\left(\mathcal{F}_{i}, \gamma\right)\right|}{\left|\mathcal{F}_{i}\right|}\left[\right.$ decreases (higher $\left.\left|\mathcal{F}_{i}\right|\right)$, so does $\hat{R}$ up until the "elbow", see video]

After some point, all $\mathcal{F}$ perform equally, and higher $\left|\mathcal{F}_{i}\right|$ worsens generalization


## Rule of thumb

If off-the-shelf methods do similarly, try constraining for interpretability

## Bonus: the Rashomon set of sparse trees

- TreefARMS: complete enumeration of $\Re$ for sparse trees
(Can be sampled when it is too large)
- Applications
a) pick among all almost-optimal models
b) study variable importance for the set of almost-optimal trees
c) $\mathfrak{R}$ for accuracy $\Rightarrow$ can enumerate $\Re$ for balanced accuracy and $F_{1}$-score
d) $\mathfrak{R}$ for a dataset $\Rightarrow \Re$ for subsets


## A panacea?

16 For many critical applications, there is no tradeoff

## A panacea?

16 For many critical applications, there is no tradeoff
1t Many off-the-shelf algorithms (with caveats)

## A panacea?

16 For many critical applications, there is no tradeoff
16 Many off-the-shelf algorithms (with caveats)
16 Even for image classification (with more caveats)

## A panacea?

16 For many critical applications, there is no tradeoff
it Many off-the-shelf algorithms (with caveats)
16 Even for image classification (with more caveats)

* Interpretable can mean very different things


## A panacea?

16 For many critical applications, there is no tradeoff
16 Many off-the-shelf algorithms (with caveats)
16 Even for image classification (with more caveats)

* Interpretable can mean very different things
* Interpretable $\nRightarrow$ users make better decisions


## A panacea?

16 For many critical applications, there is no tradeoff
it Many off-the-shelf algorithms (with caveats)
16 Even for image classification (with more caveats)

* Interpretable can mean very different things
* Interpretable $\nRightarrow$ users make better decisions
$\stackrel{\ominus}{\star}$ Interpretable $\Rightarrow$ still lots to do


## Different target groups

- Developers need insights into data and model
- ML-literate users can benefit from "simple" models
- Scientifically-illiterate users can be overwhelmed even by simple systems
- High-stakes applications require 1:1 faithfulness of the explanations
- ...


## Antecedents, mechanisms, and consequences of overreliance on AI

|  | [13] | Description | Mitigation |
| :---: | :---: | :---: | :---: |
| Antecedents | Individual differences | Differences in users' demographic, professional, social, and cultural traits affect their reliance on AI. | Provide personalized adjustments for users; Effectively onboard users; Give users choice |
| Mechanisms | Automation bias | Tendency to favor recommendations from automated systems, while disregarding information from nonautomated sources. | Effectively onboard users; Employ cognitive forcing functions; Provide personalized adjustments to users; Provide realtime feedback |
|  | Confirmation bias | Tendency to favor information that aligns with prior assumptions, beliefs, and values. | Employ cognitive forcing functions; Effectively onboard users; Provide personalized adjustments to users; Provide real-time feedback |
|  | Ordering effects | The order of presented information affects user perceptions and decisions. The timing of Al errors significantly affects user reliance. | Effectively onboard users; Provide personalized adjustments to users; Alter speed of interaction; |
|  | Overestimating explanations | High-fidelity explanations can lead users to develop overreliance on AI. | Be transparent with users; Provide realtime feedback; Provide effective explanations |
| Consequences | Poor human+Al performance | Overreliance causes poor human +Al team performance compared to the human or AI working alone. | All |

- Explaining models with black boxes can be dangerous
- Explaining models with black boxes can be dangerous
- When do we trust the proxy? If it were always right, we could just use it
- Explaining models with black boxes can be dangerous
- When do we trust the proxy? If it were always right, we could just use it
- Simple and interpretable models can often perform as well as complex, black boxes
- Explaining models with black boxes can be dangerous
- When do we trust the proxy? If it were always right, we could just use it
- Simple and interpretable models can often perform as well as complex, black boxes
- We should prefer simpler models for development (model and data debugging)
- Explaining models with black boxes can be dangerous
- When do we trust the proxy? If it were always right, we could just use it
- Simple and interpretable models can often perform as well as complex, black boxes
- We should prefer simpler models for development (model and data debugging)
- We should prefer simpler models for deployment with experts, when properly designed
- Explaining models with black boxes can be dangerous
- When do we trust the proxy? If it were always right, we could just use it
- Simple and interpretable models can often perform as well as complex, black boxes
- We should prefer simpler models for development (model and data debugging)
- We should prefer simpler models for deployment with experts, when properly designed
- Natural interpretability constraints don't always translate to better results down the line
- Explaining models with black boxes can be dangerous
- When do we trust the proxy? If it were always right, we could just use it
- Simple and interpretable models can often perform as well as complex, black boxes
- We should prefer simpler models for development (model and data debugging)
- We should prefer simpler models for deployment with experts, when properly designed
- Natural interpretability constraints don't always translate to better results down the line
- Rule of thumb: if many models perform similarly, there is probably a simple one

$\leadsto$


## Learning more

- Many excellent talks by Cynthia Rudin (YouTube)
- Prototype networks and concept embeddings (this seminar, September)
- Sparse models, anyone?
- (but...)
- QCi TransferLab
[1] Y. Alufaisan, L. R. Marusich, J. Z. Bakdash, Y. Zhou, and M. Kantarcioglu. Does explainable artificial intelligence improve human decisionmaking? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6618-6626.
[2] E.Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin. Learning Certifiably Optimal Rule Lists for Categorical Data. 18(234):1-78.
[3] A. Bell, I. Solano-Kamaiko, O. Nov, and J. Stoyanovich. It's Just Not That Simple: An Empirical Study of the Accuracy-Explainability Tradeoff in Machine Learning for Public Policy. In 2022 ACM Conference on Fairness, Accountability, and Transparency, pages 248-266. ACM.
[4] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su. This Looks Like That: Deep Learning for Interpretable Image Recognition. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.
[5] C. Chen, K. Lin, C. Rudin, Y. Shaposhnik, S. Wang, and T. Wang. An Interpretable Model with Globally Consistent Explanations for Credit Risk. ArXiv.
[6] G. Dziugaite, S. Ben-David, and D. M. Roy. Enforcing Interpretability and its Statistical Impacts: Trade-offs between Accuracy and Interpretability.
[7] M. Espinosa Zarlenga, P. Barbiero, G. Ciravegna, G. Marra, F. Giannini, M. Diligenti, Z. Shams, F. Precioso, S. Melacci, A. Weller, P. Lió, and M. Jamnik. Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off. 35:21400-21413.
[8] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis, Third Edition. CRC Press.
[9] A. Hoffmann, C. Fanconi, R. Rade, and J. Kohler. This Looks Like That... Does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks.
[10] X. Hu, C. Rudin, and M. Seltzer. Optimal Sparse Decision Trees. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.
[11] M. Jacobs, M. F. Pradier, T. H. McCoy, R. H. Perlis, F. Doshi-Velez, and K. Z. Gajos. How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection. 11(1):1-9.
[12] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer. Generalized and Scalable Optimal Sparse Decision Trees. In Proceedings of the 37th International Conference on Machine Learning, pages 6150-6160. PMLR.
[13] S. Passi and M. Vorvoreanu. Overreliance on AI: Literature review.
[14] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. 1(5):206-215.
[15] L. Semenova, C. Rudin, and R. Parr. On the Existence of Simpler Machine Learning Models. In 2022 ACM Conference on Fairness, Accountability, and Transparency, FAccT '22, pages 1827-1858. Association for Computing Machinery.
[16] B. Ustun and C. Rudin. Learning Optimized Risk Scores. 20(150):1-75.
[17] B. Ustun, S. Tracà, and C. Rudin. Supersparse linear integer models for predictive scoring systems. In Proceedings of the 17 th AAAI Conference on Late-Breaking Developments in the Field of Artificial Intelligence, AAAIWS'13-17, pages 128-130. AAAI Press.
[18] R. Xin, C. Zhong, Z. Chen, T. Takagi, M. Seltzer, and C. Rudin. Exploring the Whole Rashomon Set of Sparse Decision Trees.
[19] J. Yu, A. Ignatiev, P. L. Bodic, and P. J. Stuckey. Optimal Decision Lists using SAT.
[20] R. Zhang, R. Xin, M. Seltzer, and C. Rudin. Optimal Sparse Regression Trees. Association for the Advancement of Artificial Intelligence.


## Created with $\mathrm{T}_{\mathrm{E}} \mathrm{X}_{\text {MACS }}$

 www.texmacs.org