
An accuracy-interpretability tradeoff?

Why less can be more
and how to find it

appliedAI Institute gGmbH



Plan 2 of 39

 Disclaimer and preliminaries

 The many problems of black boxes

 Simple models for the win

 When is it worth the effort?

 Coda: risks of interpretability









A fundamental distinction

Preliminaries 5 of 39

 Interpretable ML: �not a black box�

 Explainable ML: use a proxy to explain a black box



A fundamental distinction

Preliminaries 5 of 39

 Interpretable ML: �not a black box�

 Explainable ML: use a proxy to explain a black box

A machine learning model is interpretable if it is constrained to make
it �easier to understand� for user X



A fundamental distinction
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 Interpretable ML: �not a black box�

 Explainable ML: use a proxy to explain a black box

A machine learning model is interpretable if it is constrained to make
it �easier to understand� for user X

 Many choices: sparsity, degree of non-linearity, low-order interactions . . .

 Domain- and user-specific



Our goal

Preliminaries 6 of 39

To show why we should

prefer interpretability over explanations,

to see examples where

this does not necessarily incur a performance penalty,

and to look at some

theory supporting this preference.
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Because of typos (!)
Stop explaining black box machine learning models for high stakes decisions . . . [14]

Because of bogus explanations
Incorrect recommendations with easily interpretable explanations lead to reduction in treatment selection accuracy [11]

( . . . )
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The many problems of black-boxes 9 of 39

 XAI: posthoc proxies for black boxes, e.g. LIME

 Explaining a BB: now trust two models (and the data)

 Proxies won't be 100% accurate by definition

 At best: ineffective/nonsensical, e.g. different domains for features [1]

 At worst: detrimental (under/overreliance, see later) [13]

 BBs hinder the cyclic nature of ML development

Collect data, pre-process & model, evaluate, rinse, repeat

) Better understanding of the model leads to better models

But we probably don't need BBs anyway . . .





A zoo of interpretable models

Simple models for the win 11 of 39

 Rule lists [2, 19, 15]

 Sparse scoring systems [17, 16]

 Sparse decision trees [10, 12, 20]

 Hierarchical models [5]

 Multilevel Bayesian modeling [8]

 Prototypes and concepts [4, 9, 7]



Rule lists

Simple models for the win 12 of 39

min
d2rule lists

R̂(d;S)
misclassification error

+� jdj
length of tuple d

Rules are tuples of associations, rk=pk!qk, followed by a default rule r0



Rule lists

Simple models for the win 12 of 39

min
d2rule lists

R̂(d;S)
misclassification error

+� jdj
length of tuple d

Rules are tuples of associations, rk=pk!qk, followed by a default rule r0

corels matches / beats compas with three rules [2]

Branch & bound to search among pre-mined rules

Limiting factor: # of features (�30)
��������

�Optimal decision lists using SAT� [19]

Learns rules, off-the-shelf solver, perfect or sparse



Rule lists

Simple models for the win 12 of 39

min
d2rule lists

R̂(d;S)
misclassification error

+� jdj
length of tuple d

Rules are tuples of associations, rk=pk!qk, followed by a default rule r0

corels matches / beats compas with three rules [2]

Branch & bound to search among pre-mined rules

Limiting factor: # of features (�30)
��������

�Optimal decision lists using SAT� [19]

Learns rules, off-the-shelf solver, perfect or sparse



Sparse scoring systems

Simple models for the win 13 of 39

 2helps2b for seizure risk prediction. Equal accuracy to SoTA, doctors can decide to ignore
recommendations, can recalibrate with new variables

5-CV mean test CAL/AUC of 2.7%/0.819



Sparse scoring systems

Simple models for the win 13 of 39

 2helps2b for seizure risk prediction. Equal accuracy to SoTA, doctors can decide to ignore
recommendations, can recalibrate with new variables

5-CV mean test CAL/AUC of 2.7%/0.819

 Clinical decision, risk assessment, infrastructure reliability, repair crews . . . (HITL)



Sparse scoring systems

Simple models for the win 13 of 39

 2helps2b for seizure risk prediction. Equal accuracy to SoTA, doctors can decide to ignore
recommendations, can recalibrate with new variables

5-CV mean test CAL/AUC of 2.7%/0.819

 Clinical decision, risk assessment, infrastructure reliability, repair crews. . . (HITL)

 Risk-SLIM: sparse, linear, small integer coefficients, calibrated, high rank accuracy [16]

min
�

R̂(�;S)
logistic loss

+� k�k0; s.t. � admissible and in Zd+1



Sparse scoring systems (contd.)

Simple models for the win 14 of 39

About the admissible set:
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Sparse trees

Simple models for the win 15 of 39

 Classical tree algorithms: top-down, greedy back-tracking pruning (c4.5, cart)

 (Generalised) Optimal Sparse Decision Trees [10, 12]

min
�2trees

R̂(� ;S)
misclassification

+� j� j
#leaves in �

Certificate of optimality: no better training performance possible at sparsity level

Branch & bound with: strong analytical bounds, caching, leaf representation, fast impl.

Followup gosdt: continuous variables and imbalanced data

 Followup: Optimal sparse regression trees [20]



Hierarchical models

Simple models for the win 17 of 39

 Aggregation of simple models (e.g. stacked logistic regression)

 Example: two-layer additive risk model

Learned �subscale features�

dukedatasciencefico.cs.duke.edu [5]
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Example-based reasoning

Simple models for the win 18 of 39

 Prototype images [4]

 Issues: latent representations [9]
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Example-based reasoning

Simple models for the win 19 of 39

 Concept bottlenecks (loss of accuracy)

 Concept embeddings (still prescribed concepts) [7]
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 Simple, interpretable models can match black boxes [14]

 With tabular data

 With image data

 Typically intractable, might require domain knowledge. But 9 off-the-shelf solutions

 [move to end Black boxes are sometimes necessary, sometimes better, sometimes
worse [3]]

 How can we reason about this?

Can we predict whether an interpretable model exists?
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Dataset S := f(x1; y1); : : : ; (xn; yn)g, (X;Y )�D
Hypothesis class F �Y X

Optimal f?2F minimises risk R(f) :=ED[l(f(X); Y )], for some loss l:Y �Y!R.

 Minimise empirical risk R̂S(f) :=
1

n

P
l(f(xi); yi) to obtain estimator fS := f(S)2F .

 Interpretable model class FI (F [6]

� trees of depth 6k

� linear classifiers with j� j06 k

� classifiers that can be well approximated by some class of surrogates ( . . . )

� Leaves out: dependency of FI on the data (local interpretability), different user groups

 Can we predict whether we will lose accuracy with FI?
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 FI (F

) Best risk in FI :=RI?>R? := best risk in F (modelling bias) . . . Is that it?

 R(f)6 R̂(f)+O
¡

C /n
p �

with C =O(log �capacity�(F)))

) Better generalization for FI (F . . . ??

 Let f̂I2argmin
f2FI

R̂S(f) and f̂ 2argmin
f2F

R̂S(f). The gap R(f̂I)¡R(f̂) depends on: [6]

a) Increase in modeling bias RI?¡R?> 0

b) Change in estimation error R(f̂I)¡RI? vs R(f̂)¡R?

This depends on the capacity of FI and dataset size ) can be small

Derived from Excess risk: R(fS)¡R?= RI
?¡R?

modelling bias

+ R(fS)¡RI?

estimation error
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The effect of ERM

Attempts at a theoretical description 24 of 39

 Recall f̂I 2 argmin
f2FI

R̂S(f) and f̂ 2 argmin
f2F

R̂S(f).

 The gap R(f̂I)¡R(f̂) can also be seen to depend on: [6]

a) Change in empirical risk R̂(f̂I)¡ R̂(f̂)

b) Change in generalization error R(f̂I)¡ R̂(f̂I) vs R(f̂)¡ R̂(f̂)

Will depend on dataset size and capacity of F

Derived from standard generalization bounds R(f)6 R̂(f)+O
¡

C /n
p �
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 Dependence on sample size and capacity

 Change hard to quantify

 SLT bounds look at jR(f̂)¡ R̂(f̂)j. We want: jR?¡ R̂(f̂I)j

 So. . . Not very informative [6]

Can we do better?
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 Observation

Often, if the data represent well the problem, most models perform similarly

 The (empirical) Rashomon set is the set of almost-optimal models [Breiman 2001]

R̂(F ; 
) := ff 2F : R̂(f)¡ R̂?6 
g

 Hypothesis [15]

if many models perform similarly well, then there usually is an interpretable one
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The Rashomon ratio is the fraction of models that have low loss

Ra(F ; 
) := jR̂(F ; 
)jjF j = jff 2F : R̂(f)¡ R̂
?6 
gj

jF j

Theorem. If 9f̂I 2 R̂(F ; 
) then with high probability

jR̂(f̂I)¡R?j6 
+O
¡

log(jFI j)/n
p �

Theorem. Assume that FI is �dense enough� in R̂(F ; 
), and R̂(F ; 
) is �wide enough�.
With prob 1¡ " there exist f1; : : : ; fm2FI s.t.

jR(fi)¡ R̂(fi)j6C Rad(FI)+O
¡

log( /1 ")/n
p �
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Rashomon curves

Finding all good hypotheses 28 of 39

Some empirical observations across many datasets

Tower of model classes F1� � � � �Fk�F

As Ra(Fi; 
)=
jR̂(Fi; 
)j
jFij [decreases (higher jFij), so does R̂

up until the �elbow�, see video]

After some point, all F perform equally, and higher jFij worsens
generalization

Rule of thumb

If off-the-shelf methods do similarly, try constraining for interpretability



Bonus: the Rashomon set of sparse trees

Finding all good hypotheses 29 of 39

 TreeFARMS: complete enumeration of R for sparse trees [18]

(Can be sampled when it is too large)

 Applications

a) pick among all almost-optimal models

b) study variable importance for the set of almost-optimal trees

c) R for accuracy ) can enumerate R for balanced accuracy and F1-score

d) R for a dataset ) R for subsets
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A panacea?

The risks of interpretability 31 of 39

 For many critical applications, there is no tradeoff

 Many off-the-shelf algorithms (with caveats)

 Even for image classification (with more caveats)

 Interpretable can mean very different things

 Interpretable ; users make better decisions [11]

 Interpretable ) still lots to do [13]



Different target groups

The risks of interpretability 32 of 39

 Developers need insights into data and model

 ML-literate users can benefit from �simple� models

 Scientifically-illiterate users can be overwhelmed even by simple systems

 High-stakes applications require 1:1 faithfulness of the explanations

 . . .



Antecedents, mechanisms, and consequences of overreliance on AI

The risks of interpretability 33 of 39

[13] Description Mitigation

Antecedents Individual differences
Differences in users' demographic, pro-
fessional, social, and cultural traits
affect their reliance on AI.

Provide personalized adjustments for
users; Effectively onboard users; Give
users choice

Mechanisms

Automation bias

Tendency to favor recommendations
from automated systems, while disre-
garding information from nonautomated
sources.

Effectively onboard users; Employ cogni-
tive forcing functions; Provide personal-
ized adjustments to users; Provide real-
time feedback

Confirmation bias
Tendency to favor information that
aligns with prior assumptions, beliefs,
and values.

Employ cognitive forcing functions;
Effectively onboard users; Provide per-
sonalized adjustments to users; Provide
real-time feedback

Ordering effects

The order of presented information
affects user perceptions and decisions.
The timing of AI errors significantly
affects user reliance.

Effectively onboard users; Provide per-
sonalized adjustments to users; Alter
speed of interaction;

Overestimating explanations
High-fidelity explanations can lead users
to develop overreliance on AI.

Be transparent with users; Provide real-
time feedback; Provide effective expla-
nations

Consequences Poor human+AI performance
Overreliance causes poor human+AI
team performance compared to the
human or AI working alone.

All
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 Explaining models with black boxes can be dangerous

 When do we trust the proxy? If it were always right, we could just use it

 Simple and interpretable models can often perform as well as complex, black boxes

 We should prefer simpler models for development (model and data debugging)

 We should prefer simpler models for deployment with experts, when properly designed

 Natural interpretability constraints don't always translate to better results down the line

 Rule of thumb: if many models perform similarly, there is probably a simple one




 



Learning more

Sources 37 of 39

 Many excellent talks by Cynthia Rudin (YouTube)

 Prototype networks and concept embeddings (this seminar, September)

 Sparse models, anyone?

  (but . . . )


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