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A fundamental distinction

Preliminaries 5 of 39

 Interpretable ML: �not a black box�

 Explainable ML: use a proxy to explain a black box

A machine learning model is interpretable if it is constrained to make
it �easier to understand� for user X

 Many choices: sparsity, degree of non-linearity, low-order interactions . . .

 Domain- and user-specific



Our goal

Preliminaries 6 of 39

To show why we should

prefer interpretability over explanations,

to see examples where

this does not necessarily incur a performance penalty,

and to look at some

theory supporting this preference.
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. . .

Because of typos (!)
Stop explaining black box machine learning models for high stakes decisions . . . [14]

Because of bogus explanations
Incorrect recommendations with easily interpretable explanations lead to reduction in treatment selection accuracy [11]

( . . . )
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The many problems of black-boxes 9 of 39

 XAI: posthoc proxies for black boxes, e.g. LIME

 Explaining a BB: now trust two models (and the data)

 Proxies won't be 100% accurate by definition

 At best: ineffective/nonsensical, e.g. different domains for features [1]

 At worst: detrimental (under/overreliance, see later) [13]

 BBs hinder the cyclic nature of ML development

Collect data, pre-process & model, evaluate, rinse, repeat

) Better understanding of the model leads to better models

But we probably don't need BBs anyway . . .
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Simple models for the win 11 of 39

 Rule lists [2, 19, 15]

 Sparse scoring systems [17, 16]

 Sparse decision trees [10, 12, 20]

 Hierarchical models [5]

 Multilevel Bayesian modeling [8]

 Prototypes and concepts [4, 9, 7]
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 2helps2b for seizure risk prediction. Equal accuracy to SoTA, doctors can decide to ignore
recommendations, can recalibrate with new variables

5-CV mean test CAL/AUC of 2.7%/0.819

 Clinical decision, risk assessment, infrastructure reliability, repair crews. . . (HITL)

 Risk-SLIM: sparse, linear, small integer coefficients, calibrated, high rank accuracy [16]

min
�

R̂(�;S)
logistic loss

+� k�k0; s.t. � admissible and in Zd+1



Sparse scoring systems (contd.)
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About the admissible set:
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 Classical tree algorithms: top-down, greedy back-tracking pruning (c4.5, cart)

 (Generalised) Optimal Sparse Decision Trees [10, 12]

min
�2trees

R̂(� ;S)
misclassification

+� j� j
#leaves in �

Certificate of optimality: no better training performance possible at sparsity level

Branch & bound with: strong analytical bounds, caching, leaf representation, fast impl.

Followup gosdt: continuous variables and imbalanced data

 Followup: Optimal sparse regression trees [20]



Hierarchical models

Simple models for the win 17 of 39

 Aggregation of simple models (e.g. stacked logistic regression)

 Example: two-layer additive risk model

Learned �subscale features�

dukedatasciencefico.cs.duke.edu [5]
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Example-based reasoning
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 Prototype images [4]

 Issues: latent representations [9]
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Example-based reasoning

Simple models for the win 19 of 39

 Concept bottlenecks (loss of accuracy)

 Concept embeddings (still prescribed concepts) [7]
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Attempts at a theoretical description 21 of 39

 Simple, interpretable models can match black boxes [14]

 With tabular data

 With image data

 Typically intractable, might require domain knowledge. But 9 off-the-shelf solutions

 [move to end Black boxes are sometimes necessary, sometimes better, sometimes
worse [3]]

 How can we reason about this?

Can we predict whether an interpretable model exists?
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Dataset S := f(x1; y1); : : : ; (xn; yn)g, (X;Y )�D
Hypothesis class F �Y X

Optimal f?2F minimises risk R(f) :=ED[l(f(X); Y )], for some loss l:Y �Y!R.

 Minimise empirical risk R̂S(f) :=
1

n

P
l(f(xi); yi) to obtain estimator fS := f(S)2F .

 Interpretable model class FI (F [6]

� trees of depth 6k

� linear classifiers with j� j06 k

� classifiers that can be well approximated by some class of surrogates ( . . . )

� Leaves out: dependency of FI on the data (local interpretability), different user groups

 Can we predict whether we will lose accuracy with FI?
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 FI (F

) Best risk in FI :=RI?>R? := best risk in F (modelling bias) . . . Is that it?

 R(f)6 R̂(f)+O
¡

C /n
p �

with C =O(log �capacity�(F)))

) Better generalization for FI (F . . . ??

 Let f̂I2argmin
f2FI

R̂S(f) and f̂ 2argmin
f2F

R̂S(f). The gap R(f̂I)¡R(f̂) depends on: [6]

a) Increase in modeling bias RI?¡R?> 0

b) Change in estimation error R(f̂I)¡RI? vs R(f̂)¡R?

This depends on the capacity of FI and dataset size ) can be small

Derived from Excess risk: R(fS)¡R?= RI
?¡R?

modelling bias

+ R(fS)¡RI?

estimation error
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 Recall f̂I 2 argmin
f2FI

R̂S(f) and f̂ 2 argmin
f2F

R̂S(f).

 The gap R(f̂I)¡R(f̂) can also be seen to depend on: [6]

a) Change in empirical risk R̂(f̂I)¡ R̂(f̂)

b) Change in generalization error R(f̂I)¡ R̂(f̂I) vs R(f̂)¡ R̂(f̂)

Will depend on dataset size and capacity of F

Derived from standard generalization bounds R(f)6 R̂(f)+O
¡

C /n
p �
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 Dependence on sample size and capacity

 Change hard to quantify

 SLT bounds look at jR(f̂)¡ R̂(f̂)j. We want: jR?¡ R̂(f̂I)j

 So. . . Not very informative [6]

Can we do better?
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 Observation

Often, if the data represent well the problem, most models perform similarly

 The (empirical) Rashomon set is the set of almost-optimal models [Breiman 2001]

R̂(F ; ) := ff 2F : R̂(f)¡ R̂?6 g

 Hypothesis [15]

if many models perform similarly well, then there usually is an interpretable one
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The Rashomon ratio is the fraction of models that have low loss

Ra(F ; ) := jR̂(F ; )jjF j = jff 2F : R̂(f)¡ R̂
?6 gj

jF j

Theorem. If 9f̂I 2 R̂(F ; ) then with high probability

jR̂(f̂I)¡R?j6 +O
¡

log(jFI j)/n
p �

Theorem. Assume that FI is �dense enough� in R̂(F ; ), and R̂(F ; ) is �wide enough�.
With prob 1¡ " there exist f1; : : : ; fm2FI s.t.

jR(fi)¡ R̂(fi)j6C Rad(FI)+O
¡

log( /1 ")/n
p �
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Rashomon curves

Finding all good hypotheses 28 of 39

Some empirical observations across many datasets

Tower of model classes F1� � � � �Fk�F

As Ra(Fi; )=
jR̂(Fi; )j
jFij [decreases (higher jFij), so does R̂

up until the �elbow�, see video]

After some point, all F perform equally, and higher jFij worsens
generalization

Rule of thumb

If off-the-shelf methods do similarly, try constraining for interpretability



Bonus: the Rashomon set of sparse trees

Finding all good hypotheses 29 of 39

 TreeFARMS: complete enumeration of R for sparse trees [18]

(Can be sampled when it is too large)

 Applications

a) pick among all almost-optimal models

b) study variable importance for the set of almost-optimal trees

c) R for accuracy ) can enumerate R for balanced accuracy and F1-score

d) R for a dataset ) R for subsets
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A panacea?

The risks of interpretability 31 of 39

 For many critical applications, there is no tradeoff

 Many off-the-shelf algorithms (with caveats)

 Even for image classification (with more caveats)

 Interpretable can mean very different things

 Interpretable ; users make better decisions [11]

 Interpretable ) still lots to do [13]



Different target groups

The risks of interpretability 32 of 39

 Developers need insights into data and model

 ML-literate users can benefit from �simple� models

 Scientifically-illiterate users can be overwhelmed even by simple systems

 High-stakes applications require 1:1 faithfulness of the explanations

 . . .



Antecedents, mechanisms, and consequences of overreliance on AI

The risks of interpretability 33 of 39

[13] Description Mitigation

Antecedents Individual differences
Differences in users' demographic, pro-
fessional, social, and cultural traits
affect their reliance on AI.

Provide personalized adjustments for
users; Effectively onboard users; Give
users choice

Mechanisms

Automation bias

Tendency to favor recommendations
from automated systems, while disre-
garding information from nonautomated
sources.

Effectively onboard users; Employ cogni-
tive forcing functions; Provide personal-
ized adjustments to users; Provide real-
time feedback

Confirmation bias
Tendency to favor information that
aligns with prior assumptions, beliefs,
and values.

Employ cognitive forcing functions;
Effectively onboard users; Provide per-
sonalized adjustments to users; Provide
real-time feedback

Ordering effects

The order of presented information
affects user perceptions and decisions.
The timing of AI errors significantly
affects user reliance.

Effectively onboard users; Provide per-
sonalized adjustments to users; Alter
speed of interaction;

Overestimating explanations
High-fidelity explanations can lead users
to develop overreliance on AI.

Be transparent with users; Provide real-
time feedback; Provide effective expla-
nations

Consequences Poor human+AI performance
Overreliance causes poor human+AI
team performance compared to the
human or AI working alone.

All
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 Explaining models with black boxes can be dangerous

 When do we trust the proxy? If it were always right, we could just use it

 Simple and interpretable models can often perform as well as complex, black boxes

 We should prefer simpler models for development (model and data debugging)

 We should prefer simpler models for deployment with experts, when properly designed

 Natural interpretability constraints don't always translate to better results down the line

 Rule of thumb: if many models perform similarly, there is probably a simple one




 



Learning more

Sources 37 of 39

 Many excellent talks by Cynthia Rudin (YouTube)

 Prototype networks and concept embeddings (this seminar, September)

 Sparse models, anyone?

  (but . . . )
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