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Motivation



Why Surrogate Modelling is Useful

Basis Model

• e.g. Simulations, y =M(X)
• very accurate and complex
• long compute time per cycle
• hard to understand/analysis

Surrogate Model

• Approx. of the model, fθ(X) ≈M(X)
• highly performant
• allows statistical analyses
• inaccuracies
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Surrogate Modelling in High Dimensions is Difficult

• Target: Uncertainty Quantification or Sensitivity/Robustness Analysis
• Generating samples is expensive→ limiting model complexity
• High dimensional domain
• → Curse of Dimensionality
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Higher dimensions require more samples for a good estimation
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Approaches for Surrogate Modelling in High Dimensions

Specialized Algorithms
• Regularized models
• Sparse Polynomial Chaos Expansion
• Small Neural Networks

Dimensionality Reduction
• Reduce input dimension and model
in reduced space

• (Kernel) PCA, Encoder, …
• But data is unstructured
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Proposed self-supervised algorithm

Algorithm 1: Self-supervised projection of X into a lower dimension and fitting
a surrogate model on that representation.
1: θ0 ← U [0, 1]d

2: k ∈ N, k� d
3: iterations← N
4:
5: for step : iterations do
6: dred ← φ(θstep, k,d), dred ∈ Rk

7: f ← Ψ(dred)
8: ε̂← L(y, f̂ )
9: θstep+1 ← PSO(ε̂, θstep)
10: end for
11:
12: return θ, ε̂
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Random Feature Expansion



Motivation of Random Feature Expansions

Risk minimization problems are common in Machine Learning:

min
f∈H

N∑
i=1

L(yi, fi(xi)) + λJ(f ), (1)

and by the Representer Theorem [5]

f ∗(x) =
N∑
i=1

αik(x, xi) (2)

7



Motivation of Random Feature Expansions

Risk minimization problems are common in Machine Learning:

min
f∈H

N∑
i=1

L(yi, fi(xi)) + λJ(f ), (1)

and by the Representer Theorem [5]

f ∗(x) =
N∑
i=1

αik(x, xi) (2)

BUT kernel methods do not scale well as N gets large!
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Theory on RKHS and Random Features

maybe next time …SMILE-WINK
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Kernel Approximation using Random Features

Idea: randomized map z : RD 7→ RR

k(x, y) = 〈φ(x), φ(y)〉H ≈ z(x)Tz(y) (3)

The minimizer reads:

f ∗(x) =
N∑
i=1

αik(x, xi)

=
N∑
i=1

αi〈φ(x), φ(xi)〉H

≈
N∑
i=1

αiz(x)Tz(xi)

= cTz(x)

(4)
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How could such an approx. look like?

Take h : x 7→ exp(iωTx), x ∈ Rd where ω ∼ Nd(0, I)
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How could such an approx. look like?

Take h : x 7→ exp(iωTx), x ∈ Rd where ω ∼ Nd(0, I)

Eω [h(x)h(y)∗] = Eω

[
exp(iωT(x− y))

]
=

∫
R
ρ(ω) exp(iωT(x− y))dω

= exp(− 1
2
(x− y)T(x− y))

(5)
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Generalisation using Bochner’s Theorem

Theorem (Bochner’s Theorem)
A continuous kernel k(x, y) = k(x− y) on Rd is pd. iff k(δ) is the Fourier
transform of a non-negative measure [4].

k(δ) =
∫
Rd
ρ(ω) exp(iωTδ)dω = Eω [h(x)h(y)∗] (6)
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Generalisation using Bochner’s Theorem

Theorem (Bochner’s Theorem)
A continuous kernel k(x, y) = k(x− y) on Rd is pd. iff k(δ) is the Fourier
transform of a non-negative measure [4].

k(δ) =
∫
Rd
ρ(ω) exp(iωTδ)dω = Eω [h(x)h(y)∗] (6)

If k(δ) is properly scaled, then ρ(ω) is a probability measure. And h(·)h(·)∗ is an
unbiased estimator of k(x, y).
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Representing a shift-invariant kernel by a randomly parametrized map

k(x, y) = k(δ)

=

∫
Rd
ρ(ω) exp(iωT(δ))dω

= Eω

[
exp(iωT(δ))

]
≈ 1
R

R∑
i=1

exp(iωTi (δ))

= h(x)h(y)∗

(7)
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Deriving real-valued Random Fourier Features

Using exp(iωTx)→ cos(ωTx) ∈ R

Then take

ω ∼ ρ(ω)
b ∼ U(0, 2π)

zω(x) =
√
2 cos(ωTx+ b)

z(x) =
[
1√
R
zω1(x), . . . ,

1√
R
zωR(x)

]T
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Example: Approximating the Kernel matrix

Abbildung 1: Approximating the Kernel matrix K ∈ R1000×1000 of the RBF kernel with γ = 1
2

on the scikit-learn curves dataset[2]. The normalized deviations between K and its
approximations: 2.54, 0.82, 0.37 and 0.09.
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Low-order functions

Definition (Order-q Functions1)

Given a linear function f : Rd → C. f is said to be an order-q function of at most
K terms, if there exist K such functions g1, . . . ,gK : Rq → C, where q� d,q ∈ N,
such that

f (x) =
K∑
j=1

gj(x|Sj) =
K∑
j=1

gj(x1j , . . . , xqj).

Sj is a subset of the index set [d] and x|Sj is the restriction of the input vector
onto the subset.

That is, the function f can be represented using K linear terms, each of which
depends on q of the d variables.
1The definition is in accordance to Hashemi et al. [1] with minor adaption.
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Sparse Random Feature Expansion
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Surrogate Modellierung using Sparse
Random Features



Proposed self-supervised algorithm

Algorithm 2: Self-supervised projection of X into a lower dimension and fitting
a surrogate model on that representation.
1: θ0 ← U [0, 1]d

2: k ∈ N, k� d
3: iterations← N
4:
5: for step : iterations do
6: dred ← φ(θstep, k,d), dred ∈ Rk

7: f ← Ψ(dred)
8: ε̂← L(y, f̂ )
9: θstep+1 ← PSO(ε̂, θstep)
10: end for
11:
12: return θ, ε̂
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Experiment Setup

Data generation via Sobol function:

yi =
d∏
j

|4xi − 2|+ ci
1+ ci

, c = {1, 2, 5, 10, 20, 100, 5 · 103, . . . , 5 · 103}

Data split:
Xtrain ∈ R800×20, Xval ∈ R1000×20

Methods:

φθ : Kernel PCA, anisotropic kernel

fω : Polynomial Chaos Expansion, fω(x) =
∑
a∈A

caψa(x)

fω : Random Feature Expansion, f#ω =
N∑
j

c#j φ(x, ωj)
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Results
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Results
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What else can be done with Random Features

Random Fourier Attention [3]

Abbildung 2: Approximating Softmax Attention
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Backup



Sparse Random Feature Expansion

21



Sparse Random Feature Expansion

Given f be a q-order function with all gl ∈ F(φ, ρ), l ∈ {1, 2, . . . , K} where φ = exp(〈x, ω〉i).
[..] Let ω1, . . . , ωN ∼ N (0, σ2Iq) and x1, . . . , xm ∼ N (0, γ2Id). [..] Then with the following
inequalities

1. …

2. N ≥ 4
ε2

(
1+ 4Rσ√q+

√
q
2 log(

d
δ )

)2

3. m ≥ 4
(
2γ2σ2 + 1

)max(2q−d,0) (
γ2σ2 + 1

)min(2q,2d−2q)
log N2

δ

4. …

it holds with probability at least 1− 4δ:

sup
x∈Rd
‖f (x)− f#(x)‖2 ≤ ε‖f‖ρ + C′κs,1(c̃∗) + Cη

√
s (8)
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Complexity

Sampling O(
√
n log n) centers from the dataset allows error bounds of O(1/

√
n).
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